
RL-TR-97-76
Final Technical Report
August 1997

AN ARCHITECTURE FOR EXTERNALLY
CONTROLLABLE VIRTUAL NETWORKS
AND ITS EVALUATION ON NYNET

Columbia University

Mun Choon Chan, Aurel A. Lazar, and Rolf Stadler

«0®
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Rome Laboratory
Air Force Materiel Command

Rome, New York
[UHC QUALITY INSPECTED 3

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-97-76 has been reviewed and is approved for publication.

): g^j^^wL
APPROVED:

BRADLEY J. HARNISH
Project Engineer

J^A^^Ut*^» FOR THE DIRECTOR:
" JOHN A. GRANIERO, Chief Scientist

Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please
notify RL/C3BC, 525 Brooks Road, Rome, NY 13441-4505. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information

Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

August 1997
3. REPORT TYPE AND DATES COVERED

Final Jun 94 - Nov 96
4. TITLE AND SUBTITLE

AN ARCHITECTURE FOR EXTERNALLY CONTROLLABLE VIRTUAL
NETWORKS AND ITS EVALUATION OF NYNET
6. AUTHOR(S)

Mun Choon Chan, Aurel A. Lazar, and Rolf Stadler

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Columbia University
Center for Telecommunications Research
801 Schapiro Research Building
New York. NY 10027-6699
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Rome Laboratory/C3BC
525 Brooks Road
Rome, NY 13441-4505

5. FUNDING NUMBERS

C - F30602-94-C-0150
PE -62702F
PR -4519
TA -22
WU-28

8. PERFORMING ORGANIZATION
REPORT NUMBER

CTR 469-97-03

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-97-76

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Bradley J. Harnish/C3BC/(315) 330-1884

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release, distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
The goal of this work was to develop a communication architecture that allows the creation of a virtual enterprise

network for a geographically distributed corporation that is made up of a private high-speed backbone and islands of
private component networks connected using a public broadband infrastructure. The management and control system
of the enterprise network is, as far as possible independent of the characteristics of the underlying public network
services and it guarantees quality of service and survivability end-to-end. It allows reconfiguration of the virtual
enterprise network during operational time in response to external conditions through dynamic bandwidth allocation
on different network control layers, which operate on different time scales. A key idea in the proposed architecture is
the enhancement of external control through the use of the Virtual Path Group concept in the construction of the
virtual enterprise network. The results of this effort are directly applicable to the extension of the Global Grid
backbone into theaters of operations.

Validation of the design was based on network emulation, which included executing the behavior of the network
components and their interactions under the control of a parallel simulation kernel running on a high-performance
computer. The architecture was implemented on a network emulator on two supercomputers located at the Cornell
Supercomputer Center. The emulation system was interactively controlled by and visualized on an Open GL-based
graphics workstation at Columbia University that was connected to Cornell over high-speed (See Reverse)
14. SUBJECT TERMS

ATM Network, Virtual Private Networks, Global Grid, Network Management, External
Network Control, End-to-end QOS, Network Emulation, Network Visualization, Super-
computer, Parallel Simulation Kernel
17. SECURITY CLASSIFICATION

OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

110
16. PRICE CODE

20. LIMITATION OF ABSTF5ACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR. Oct 94

SF Form 298

13. Abstract (Continuation)

NYNET links. A set of performance management capabilities was also realized for this
service, including quality of service management, virtual path management, and priority
management.

Table of Contents

Introduction 1

VPN Architecture for Customer Control and Management 5

2.1 Broadband VPN Services 5
2.2 Customer Control 9

2.3 Customer Control and Management Objectives 10
2.4 The Proposed Architecture for Customer Control and Management 13

2.5 Controller Design 16
2.6 Enabling Management Objectives 19

QOS Guarantees and VPN Control Algorithms 23

3.1 Introduction 23
3.2 Constructing a Call-Level Abstraction with Cell-Level QOS Guarantees 24
3.3 Review of VP Control Algorithms 29
3.4 Realization of the Control System 30
3.5 Evaluation of the Control System 41

The High Performance Platform for Experimentation 45

4.1 The Platform 45
4.2 Building an Emulation Platform on the KSR-1 47
4.3 Porting the Emulation Platform from KSR-1 to SP-2 55

Prototyping the VPN Architecture 57

5.1 The Prototyping Approach 57
5.2 Design of the Emulation Platform 60
5.3 The Parallel Simulation Kernel 62
5.4 Emulation Objects 66
5.5 Emulation Support 69
5.6 Real-Time Visualization and Interaction 71

Discussion and Summary 83

6.1 Summary of Work Performed 83
6.2 Related Accomplishments 84
6.3 Future Work and Discussions 84

[DTIC QUALITY INSPECTED S

Introduction

The goal of this work is to develop a communication architecture that allows for the cre-
ation of a virtual enterprise network for a geographically distributed large corporation. The enter-
prise network is made up of a private high-speed backbone and islands of private component
networks connected using public broadband infrastructure (Figure 1). The management and con-
trol system of the resulting enterprise network is, as far as possible, independent of the character-
istics of the underlying public network services and guarantees quality of service and survivability
end-to-end. The results of this effort are directly applicable to the extension of the Global Grid
backbone into theatres of operations.

Component Networks
(private)

Virtual Network

Public Network
Backbone

Private Backbone

Traffic Control
of Virtual Network

Figure 1 A Virtual network interconnecting a private backbone with isolated component networks.

Introduction

Specifically, we develop an architectural framework in which we propose solutions to the
following questions:

• How should end-to-end quality of service be provided over the private components (private
backbone and component networks) and public networks?

• What is the control and management architecture for such a network?

• How should this architecture be evaluated and realized?

Our approach is to construct, on top of a public network environment, a virtual network
that enables the transparent interconnection of a private backbone with isolated component net-
works, and that guarantees quality of service. The virtual network allows reconfiguration during
operational time in response to external conditions through dynamic bandwidth allocation on dif-
ferent network control layers, which operate on different time-scales. A key idea in the proposed
architecture is the enhancement of external control through the use of the virtual path group (VPG)
concept in the construction of a virtual private network (VPN). External control is regarded as the
same as customer control in our context, and the term customer control will be used throughout in
the report.

Our approach for validation is based on network emulation, which includes executing the
behavior of network components and their interactions under the control of a parallel simulation
kernel running on a high-performance machine. The emulation environment allows us to experi-
ment with the functionality and dynamics of virtual networks (and the underlying networks), with
greater flexibility and lower cost than implementing components on a real testbed.

We have implemented the architecture on a network emulator first on a KSR-1 and then on
a IBM SP2. Both supercomputers are located at the Cornell Supercomputer Center. The emulation
system, which can run on either one of the supercomputers, is controlled by and visualized on an
Indigo2 workstation at Columbia that is connected to Cornell over high-speed NYNET links. The
Network visualization interface is based on OpenGL, a 3D graphics package.

This experimental platform helped us to deliver the proof of concept for our work, and
allows us to revise the developed architecture. We are able to validate the functional and dynamic
aspects of the key concepts of the architecture for various system configurations. Further, the inter-
active control and visualization of the architecture enables us to demonstrate the system concepts,
especially the concepts of external control and monitoring.

Introduction

The report is divided into 2 parts: architecture design and prototyping of the proposed
architecture. The design of the architecture is described in Chapters 2 and 3. In Chapter 2, a
review of existing virtual network services is presented, followed by motivation for external con-
trol and description of the proposed architecture. In Chapter 3, we focus on the issues of QOS
guarantees and control algorithms. Our approach to evaluation and realization of the proposed
architecture is described in Chapters 4 and 5. In Chapter 4, we describe the high performance plat-
forms used for network emulation and the lessons learned. In Chapter 5, we describe the prototyp-
ing approach used for architectural evaluation and for bridging the gap between design and
realization. Finally, in Chapter 6, we present a summary of our results and possible extensions of

our work.

3/4

VPN Architecture for
Customer Control and
Management

2.1 Broadband VPN Services

Broadband technology has the potential to change corporate networking in major ways.
Broadband networks are aimed at providing quality-of-service (QOS), thus making it possible to
support real-time services like voice and video communication, in addition to best-effort data
delivery. Due to their ability to integrate different services on the cell-level, they provide a prom-
ising platform for distributed multimedia applications that are emerging today. Furthermore, the
advent of broadband technology will enable the integration of today's separate corporate networks
(voice network, data network), which often rely on different public services (e.g., leased lines for
voice traffic and LAN interconnection, frame-relay service for low-volume data exchange) into a
single enterprise network, using a single Virtual Private Network (VPN).

A broadband virtual private network (VPN) is a service that provides broadband transmis-
sion capability between islands of customer premises networks (CPNs). It is a central building
block for constructing a global enterprise network (EN) which interconnects geographically sepa-
rate CPNs.

A VPN service involves several administrative domains: the customer domain, the domain
of the VPN service provider—also called "value added service provider" (VASP)—, and one or
more carrier domains [SCH93]. As a result, it is necessary to address the aspects of multi-domain
management in the context of VPN service management and provisioning ([HAL95], [LEW95],
[TSC95]). The scope of this paper is limited to the customer domain and the interaction between
the customer domain and the VPN provider domain.

VPN Architecture for Customer Control and Management

Figure 2 Customer's view of a virtual private network

In the following, we briefly describe different types of broadband VPN services, taking the
customer's point of view (Figure 2). Traditionally, leased line circuits based on STM (SDH/
SONET) technology have been used for providing VPN services [YAM91]. The speed of the cir-
cuit can be changed by customer-provider cooperative control. However, dynamic bandwidth
adjustment for leased line circuits is inefficient and costly compared to ATM-based services,
which place no restriction on the line speeds the customer can choose from [HIT94].

Service providers are beginning to offer broadband VPN services using ATM transport net-
works. Two common approaches are VC-based VPN services ([MOU95], [SAY95], [FOT95]) and
VP-based VPN services [ATS93]. These services provide ATM logical links between separate
CPNs. In the case of a VC-based VPN service, the customer requests a new VC from the provider
for every call to be set up over the VPN. Bandwidth control and management between customer
and provider is performed per VC.

In the case of a VP-based VPN service, customers can perform their own call and resource
control for a given VP, without negotiating with the VPN provider. Bandwidth control and man-
agement between customer and provider is performed per VP.

VPN Architecture for Customer Control and Management

VC-based and VP-based VPN services replace today's leased line services. They offer
customers more flexibility in dynamically requesting adjustments in the VPN capacity. Since net-
works typically exhibit a dynamic traffic pattern, such a technique of rapid provisioning will result
in lower cost for the customer, because pricing is expected to be based on the VPN capacity per
time interval allocated to the enterprise network.

A VPG-based VPN service has been proposed to enhance customer control over the VPN
[CHA96]. This service is based on the Virtual Path Group (VPG) concept, which has been intro-
duced in [HIS94] to simplify virtual path dynamic routing for rapid restoration in a carrier net-
work.

CPN

Figure 3 A VPG-based virtual private network

A VPG is defined as a logical link within the public network provider's ATM network.
Figure 3 shows a VPG-based Virtual Private Network connecting 3 CPNs. A VPG is permanently
set up between two VP cross connect nodes or between a VP cross connect node and a CPN
switch that acts as a customer access point for the VPN service. Any ATM switch that supports
VP switching can be used as a VP cross connect node, including an ATM LAN switch such as
FORE ASX-100. A VPG accommodates a bundle of VPs that interconnect end-to-end customer
access points. The VPN provider allocates bandwidth to a VPG, which defines the maximum total

VPN Architecture for Customer Control and Management

capacity for all VPs within the VPG. A VPG-based VPN consists of a set of interconnected VPGs.

VPs and VPGs are set up by the network management system of the VPN provider during
the VPN configuration phase. Only the network management systems must know about the routes
of the VPGs, their assigned bandwidth, and the VPs associated with them. The use of VPGs has no
impact on cell switching, as cells are transmitted by VP cross connect nodes based on their VP
identifier. In order to guarantee cell-level QOS in the carrier's network, policing functions (Usage
Parameter Control) are required at the entrance of each VPG.

The VPG concept enhances the customer's capability for VP capacity control. It allows
transparent signalling and dynamic VP bandwidth management within the customer domain. A
customer can change the VP capacities, within the limits of the VPG capacities, without interact-
ing with the provider. As a result, the VPG bandwidth can be shared by VPs with different source-
destination pairs. Furthermore, customers can independently achieve the optimum balance
between the resources needed for VP control and the resources needed to handle the traffic load.

A summary of the three approaches to VPN provisioning is given in Table 1.

^\ Private Network
\^schemes

Bandwidth ;^^
sharing level \.

ATM leased line

[ATS93]

VPN based on
cross connect VCs

[FOT95]

VPG-based Virtual
Private Network

[CHA96a]

- bandwidth of a
physical link

- shared by traffic from
different customers

VP capacity control
with customer-PN
negotiation

VPG bandwidth control
with customer-PN
negotiation

- dedicated bandwidth
to a customer

- shared by different
source-destination(s-d)
traffic

call by call VC
setup
by customer

VP capacity control
by customer

- dedicated bandwidth
to a s-d pair

- shared by the same
s-d traffic

call by call VC
setup
by customer

call by call VC setup
by customer

Table 1: Summary of Approaches to Broadband VPN Provisioning

VPN Architecture for Customer Control and Management

2.2 Customer Control

Corporations want to control and manage their enterprise networks according to their own
control objectives and management strategies. This implies that a corporate customer, using a
VPN service, needs the capability to control and manage its traffic on the VPN—possibly in coop-
eration with the provider. For the designer of an enterprise network, the question arises, which
part of the control functionality is executed in the customer's domain and which part in the pro-
vider's domain. More precisely: which functions are performed by the customer alone, which by
the provider alone, and which in the form of customer-provider cooperative control.

There are strong reasons for customer control, i.e., for running traffic management func-
tions in the customer domain. Firstly, different customers pursue different control and manage-
ment objectives while running their enterprise networks. For example, customer requirements
concerning the traffic carried on in a VPN are very diverse with respect to supporting multimedia
traffic with different performance characteristics and performance requirements. Some customers
may want to operate a multiclass network with several traffic classes for both real-time and non
real-time traffic and a high degree of cell-level multiplexing; others may want to support just one
class of traffic with peak rate allocation. Some might want to implement a call priority scheme
which enables calls of higher priority to pre-empt those of lower priority when the network is con-
gested; others may want to apply other control schemes in case of congestion, etc., etc. Providers
face difficulties to support such diverse requirements. Customers who know their requirements
better than the providers may be in a better position to execute control according to their objec-
tives.

Also, operations under customer control can be executed faster than those performed in
cooperation with the provider, since no negotiation is required. For example, setting up connec-
tions over a VPN can be done by the customer in a distributed way, based only on local informa-
tion. This allows customers to engineer or configure their traffic control systems in such a way
that short connection set-up times can be achieved, which is required by some applications.

Secondly, customers want provider-independent control in order to meet special require-
ments for the enterprise network [ZER92]. For example, usage collection that permits billing at a
level of detail beyond the provider's capability, such as billing at an application level, may be
needed. Furthermore, the partitioning of the VPN by the customer may be required to implement
sophisticated access control mechanisms, which prevent unauthorized access to certain partitions

VPN Architecture for Customer Control and Management

of the network. Also, automatic fall back mechanisms may be desirable for critical applications
that need high network reliability.

Finally, moving the responsibility for VPN traffic management from the provider to the
customer accelerates the introduction of Broadband VPN services. Specifically, public VPN ser-
vices based on CBR VPs can be provided efficiently today [ATS93, FOT95]. However, such a ser-
vice requires resource control by the customers, since they will be billed based on allocated

bandwidth-even if they do not use it.

Obviously, raising the level of customer control increases the complexity of the customer
control system. However, recent advances in distributed object-oriented technology make it easier
to build network control systems with a rich functionality.

In the next section, we present an architecture for management and control of a broadband
VPN service. The architecture is operated by the customer and emphasizes the concept of cus-
tomer control. We outline how different control and management objectives can be achieved with
this architecture. An element of this architecture is the design of a generic resource controller,
which can be specialized in order to realize a large class of control schemes, following a cus-

tomer's specific requirements.

2.3 Customer Control and Management Objectives

From the perspective of traffic control, the customer wants to achieve two sets of objec-
tives. The first set relates to end-to-end QOS requirements for the traffic on the enterprise network,
which translates into QOS objectives for the traffic that traverses the VPN. QOS objectives on the
cell level are usually expressed in terms of bounds on end-to-end delays and error rates. On the
call level, QOS objectives include call blocking constraints and bounds on call set-up times. The
second set relates to efficient use of VPN resources, primarily trunk bandwidth.

Efficient use of the VPN bandwidth is very much related to the QOS requirements. On one
end of the spectrum is peak rate allocation in the form of CBR VPs, where the provider guarantees
upper bounds for delays and loss rates on the VPs [ATS93]. Based on this information, the cus-
tomers can choose to run their own multiplexing schemes on various levels if more efficiency is
desired and less stringent QOS requirements can be tolerated. On the cell-level, exploiting multi-
plexing among calls with the same source-destination pair in the VPN can be performed using the
schemes described in [HYM91, ELW93]. Cell multiplexing among calls with different source-des-
tination pairs can be achieved using the contract region concept [HYM94]. On the call-level,

10

VPN Architecture for Customer Control and Management

schemes used for VP control (e.g. [OHT92]) can be used to exploit multiplexing among calls with
the same source-destination pairs. Finally, the schemes described in [FOT95] and [CHA96a] can
be used to multiplex calls with different source-destination pairs. Depending on the type of VPN
service the provider offers, the customer can choose to implement a combination of the above
described multiplexing schemes in the customer control system.

In terms of managing the enterprise network, customers want capabilities to control the
bandwidth cost of the VPN service, define QOS objectives and set preferences and priorities for
resource allocation to deal with congestion situations. These management objectives apply to the
customer domain only and are different from customer to customer. They define the policies
according to which the customer control system operates. Management capabilities can be real-
ized by tuning controllers in the customer control system (Section 4.3). For illustration purposes,
we describe below some of the management capabilities we have implemented in our prototype
system.

In terms of managing the enterprise network, customers want capabilities to control the
cost of the VPN service, define QOS objectives and set preferences and priorities for resource
allocation to deal with congestion situations. These management objectives apply only to the cus-
tomer domain and are different from customer to customer. They define the policies according to
which the customer control system operates. Management capabilities can be realized by tuning
controllers in the customer control system (see Section 4.3). For illustration purposes, we describe
below some of the management capabilities we have implemented in our prototype system.

Cost management allows the customer to define the maximum average cost of the VPN
communication resources over a specific period of time. This capability is realized by setting con-
straints on the negotiation of VPN bandwidth between the customer and the provider. VP manage-
ment allows the customer to directly manipulate VP bandwidth. Operationally, the control of the
VP bandwidth can be executed either automatically by the customer control system or under
direct control of the operator of the enterprise network. The operator can allocate a fixed amount
of bandwidth to a VP, which must be respected by the control system. QOS and priority manage-
ment operations define how calls are handled in the enterprise network. In our specific implemen-
tation, every call is characterized by a performance class and a priority class. Both classes
represent independent concepts. The performance class of a call determines its QOS require-
ments. QOS management deals with managing the level of service provided to different perfor-
mance classes. In particular, the customer can modify the blocking objectives of calls belonging
to a performance class. The level of priority determines the relative importance of a call. In our

11

VPN Architecture for Customer Control and Management

scheme, a high priority call can preempt a call of lower priority in case of congestion. The cus-
tomer can enable and disable priority control and can set blocking objectives for priority classes.
The above described management capabilities are orthogonal in the sense that they can be applied

independently of one another.

12

VPN Architecture for Customer Control and Management

2.4 The Proposed Architecture for Customer Control and Manage-
ment

In this section, we describe the design of a control system for a VPG-based VPN service.

Since a VPG-based VPN service can be seen as an extension of a VP-based VPN service, its con-

trol system contains an additional layer of functionality, the VPG control layer, which operates on

a medium time-scale.

The customer control system is operated by the customer and runs in the customer

domain. In our design, the primary interaction between the customer and the VPN provider relates

to negotiation of VPN bandwidth. This gives customers a high degree of control over the traffic

that is carried over the VPN. Specifically, customers can perform all aspects of call control and

VP control independently of the provider, according to their own objectives and requirements.

VPN Manager
- Configuration
- Mgt Objectives

Slower
Time-Scale
of Control

VC Setup-
Reply -

I
Customer Control System

VPG Capacity

VPN Controller
-VPG Capacity Allocation
- Negotiation with PN

VP Capacity
VPG Controller
- VP capacity allocation
- VP restoration

/

VP Controller
- VC capacity allocation
- VC restoration/reroutine

Enterprise Network Domain

TMN Management
System for VPN
Provisioning and
Control.

VPN Provider Domain

Figure 4 A functional model of the customer control system

13

VPN Architecture for Customer Control and Management

Figure 4 shows the systems involved in the provisioning and operation of a VPG-based
VPN. In the provisioning phase, information concerning the VPG topology, the VP topology and
the mapping between them is exchanged and stored in the management systems of the customer
and the provider. Knowledge about the VPGs is also required in the provider's control system,
which performs Usage Parameter Control (UPC) per VPG. The use of VPGs has no influence on
cell switching and transmission, since cells are switched according to the VP identifiers in their
headers.

Figure 4 also shows the organization of the control system according to time-scales. The
customer control system contains three classes of controllers: VP controller, VPG controller, and
VPN controller. These controllers operate on different time-scales and run asynchronously.

View for Call Processing

O CPN Switches VP

EN CTO

View for VPN Control

VPG

Figure 5 Network views the controllers operate on

14

VPN Architecture for Customer Control and Management

We illustrate the interaction among these controllers with an example. Assume that one of
the VPs experiences a sudden increase in traffic load. The VP controller that is associated with
this VP admits calls as long as there is sufficient capacity. If there is not sufficient capacity avail-
able, calls are blocked. On a slower time scale, the VPG controller detects the congestion in this
particular VP and attempts to allocate additional bandwidth to this VP. If the increase in traffic
load is transient and, therefore, the demand for bandwidth drops after some time, the interaction
stops here. Otherwise, if the congestion persists, the VPN controller, which runs on a slower time-
scale, will request additional VPN capacity from the provider.

For the purpose of dynamic bandwidth control, a VPG-based VPN can be compared to an
ATM network in which the link size can be varied. Therefore, controllers in the customer domain
operate on two views of the network (Figure 5). The view on the left side of Figure 5 shows a net-
work of end-to-end VPs which connect a set of CPNs. The view on the right shows a VPG net-
work, which connects the same set of CPNs. The relationship between VPs and VPGs defines the

mapping between both views.

The VP controller, which participates in call setup and release in the enterprise network,
operates on the left view. The controller decides whether a call can be admitted into the VPN,
based on the VP capacity, its current utilization and the admission control policy. The VP control-
ler behaves likes an admission controller. It ensures that enough capacity is available, such that
cell-level QOS can be guaranteed for all calls that are accepted. The controller runs on the time
scale of the call arrival and departure rates (seconds or below). There can be one VP controller per

VP, or one for a set of VPs.

The VPG controller operates on both views. Depending on the state of the VPs (in particu-
lar, traffic statistics and VP size) and the control objectives, it dynamically changes the amount of
VPG bandwidth allocated to associated VPs. This controller enables customers to exploit varia-
tions in utilization among VPs that traverse the same VPG, allowing bandwidth between VPs of
different source-destination pairs to be shared without interacting with the provider. In order to
guarantee QOS, the sum of the VP capacities must be less than or equal to the capacity of the
VPG link. The controller runs on a time-scale of seconds to minutes.

The VPN controller operates on the right view. It is the only controller which interacts
with the provider, and it runs on the slowest time scale of all the controllers (minutes or above).
The VPN controller dynamically negotiates the bandwidth of the VPG links with the provider,

15

VPN Architecture for Customer Control and Management

based on traffic statistics and control objectives (e.g., minimizing the VPN cost), while observing
the customer's QOS requirements.

2.5 Controller Design

VP Controller VPG Controller

Figure 6 Functional model of a call admission controller interacting with a VPG controller.

Figure 6 shows the functional design of a VP controller and a VPG controller according to
our implementation. In this design, the VP controller includes two objects: a VC capacity allocator
and a coordinator. The allocator receives requests from a VC connection manager in the customer
domain. The coordinator changes the capacity of the VP upon request from the VPG controller. It
changes the capacity of the VP only when the bandwidth requirements of the active calls in the VP
do not exceed the new capacity.

The VPG controller includes four objects. The trigger object periodically initiates the VP
capacity allocator to run the VP allocation algorithm. The coordinator sends the new VP capacities
to the coordinators of the associated VP controllers, using a synchronization protocol. Finally, an
estimator object collects statistics from the VP controllers. This data is used by the capacity allo-
cator.

16

VPN Architecture for Customer Control and Management

Obviously, there exist many ways of realizing the above design, with respect to control
algorithms, mechanisms for trigger realization, synchronization protocols, and centralized or dis-
tributed implementation of the controllers. For example, the control system may include one VP
controller per VP or one centralized controller for the whole VPN. The same applies for VPG
control. Also, VP controllers can send bandwidth requests to VPG controllers, triggered by a
pressure function, or a VPG controller can periodically recompute the VP capacities and distrib-
ute them to VP controllers. Similarly, the synchronization protocols between the VC admission
controller and the VPG controller can be realized in different ways. One possibility is that the VP
controller, upon receiving a request to change the VP size, checks whether the current utilization
is above or below the new size. If the utilization is below, the VP size is changed and a confirma-
tion is sent to the coordinator of the VPG controller. If it is not below, the VP size remains the
same and a failure reply is sent instead. In another possible implementation, when the attempt for
changing the VP size is not successful, the VP controller waits and blocks further calls from being
admitted. Then, the utilization of the VP can only decrease, as calls can leave but no new calls are
admitted. When the utilization drops below the new size, the VP size is updated and the reply sent

to the VPG controller.

A customer's choice for a specific design of the control system is based upon its control
objectives and requirements for the control system, which relate to system size, expected traffic
and signalling load, efficiency of resource control and robustness of the control system. In order to
enable the realization of a large class of control objectives and control schemes, we have designed
a generic controller as one of the building blocks of a customer control system. This generic con-
troller enables many interaction patterns among controllers and is constructed in a modular way.

Figure 6 shows a functional model of the generic controller, which includes two sets of
subcontrollers in a symmetrical design. One set of subcontrollers regulates the access to the
resource, and the other set controls the size of the resource. The two sets of subcontrollers cooper-
ate by accessing a shared data object, the resource graph. Each set of subcontrollers is made up of
three functional components: trigger, allocator, and coordinator. The trigger decides when a com-
putation should be done. The allocator performs the computation, which can be initiated by an
external controller or by the trigger. The allocator that controls the access to the resource com-
putes the amount of the resource that should be given to a particular request. The allocator that
controls the size of the resource determines the resource capacity. A change of the resource capac-
ity is coordinated by the coordinator object, which facilitates the interaction with other control-
lers. In particular, it implements the synchronization protocol needed to ensure that state changes
among distributed controllers do not violate a set of resource constraints. The resource graph is

17

VPN Architecture for Customer Control and Management

modeled as two sets of weighted graphs, one representing the resource allocation and statistics, the
other the resource capacity. Interfaces are provided to access and modify the relationship among
these graphs. The statistics on the graph are collected and updated by the State Estimator.

confirm

(control access to resource)

modify

(control size of resource)

confirm

modify

update

Figure 7 Functional model of a generic controller

In our implementation, a generic controller is realized as a container class in C++, which
includes as base classes the subcontrollers, trigger, allocator, coordinator, etc. Interfaces offered by
these subcontrollers are implemented as virtual functions that are overloaded for a specific realiza-
tion of the controllers.

The design of the generic controller shown in Figure 6 has brought us the following bene-
fits. First, it was possible for us to design and implement all three classes of controllers -VP con-
troller, VPG controllers, and VPN controller- as a refinement of the generic controller class. For
example, the VP controller in Figure 6 has two "non-trivial" controller objects -the VC resource
allocator and the coordinator- and five "trivial" controller objects. (Trivial controller objects can

18

VPN Architecture for Customer Control and Management

be thought of as objects which perform no action except that of forwarding data to another object.
They are not shown in Figure 6). The VPG controller contains four non-trivial controller objects

and three trivial objects.

Second, based on the generic controller design, we were able to realize different control
schemes that attempt to achieve different control objectives for the customer control system. Real-
izing different control schemes is often possible by exchanging a set of subcontrollers in the sys-
tem. For example, we implemented two classes of VC capacity allocators, realizing different VP
schemes. One scheme aims at achieving call blocking objectives related to performance classes.
The other scheme realizes call preemption in case of congestion, taking into account the priority
of a call. In the same way, we have realized different synchronization protocols by building differ-
ent classes of coordinator objects. One of these protocols is designed towards efficient use of VPN
bandwidth, another towards guaranteeing fair access to the VPN capacity in case of overload con-

ditions.

2.6 Enabling Management Objectives

The customer operates a management system to control and monitor the traffic on the
enterprise network. A part of this system manages the traffic over the VPN, which is the focus of
this paper. Examples of management capabilities that are related to the VPN service include con-
trolling the bandwidth cost of the VPN service, VP bandwidth management, and QOS manage-
ment. In the following, we describe how the management objectives outlined in Section 3 can be

realized.

VPN Architecture for Customer Control and Management

Operator Interface

Control ^Monitoring

Management Parameters

I State Abstractions

Map Management
to Control Parameters

t
Create Abstractions

Control Parameters
i k

t 1 '

 ±— -*
t

.-" ^
♦

-"

Customer
Management

System

Customer
Control
System

Figure 8 Framework for customer management

Figure 8 shows our framework for implementing management capabilities. In this frame-
work, management parameters, which directly relate to management objectives, are mapped onto
control parameters, which influence the behavior of the controllers, and are subsequently distrib-
uted to the controllers in the customer control system [PAC95]. In our implementation, manage-
ment parameters are made available to the operator of the enterprise network through the
management console (Figure 8).

A management parameter can be mapped onto control parameters for one or more classes
of controllers. For example, cost management operations affect only the VPN controller. Allocat-
ing a specific capacity to a VP through a VP management operation affects both the VPG and the
VPN controllers. QOS management operations, such as setting call blocking objectives, generally
affect all classes of controllers. In response to a change in blocking objectives, the VP controller
adjusts its VP policy, the VPG controller changes the VP allocation strategy, and the VPN control-
ler negotiates the VPG sizes according to the new bandwidth requirements.

20

VPN Architecture for Customer Control and Management

:;■"■Jnitrfact ;;^:

;.::::Mtw»agemefrt:.:

i m

: l£jsv 1

AiSKHiij tf

^ nmntatMeait

[.r.

Hutu Hoiy c: .Vß

100

.-•_ HPA/Mawy/my* J

ne

^^ :

"■":10<:
MH;

{CB.-Ftt.}, tCtl.-SB.), CCU.-CTC}, <£1

S2|Prtori$M;enaHetä

VP Pr*to*fi« E 1.86886!

HS^3fr»^T*>.£._.*:

m AtÄrtCaßs

„| Ace«ffte*R^e«KiCaB3

13 Aixepteätö^Btea toad' if

JDS»»

Figure 9 The customer management console for a VPG-based VPN service. The upper layer
represents the VP network, the lower layer the VPG network. The vertical bars on the VP network
indicate the utilization, the vertical bars on the VPG network the allocation of VPG bandwidth to
VPs

Figure 9 shows the screen of the management console that we have implemented for cus-
tomer management of a VPG-based VPN service. Both layers of the VPN are visible. The upper
layer represents the VP network, the lower layer the VPG network. The vertical bars on the VP
network show the current utilization of the VPs. The three segments of a particular bar correspond
to the three traffic classes supported in our particular system. The outline of the cylinders indicate
the currently allocated VP capacities. The vertical bars on the VPG network give the allocation of
the VPG bandwidth to the VPs. A "cloud view" on the lower left corner shows the number of
active calls in the VPs. Each axis corresponds to a traffic class. In this specific snapshot, one can
see that two of the VPs experience a much higher load than the others. The interface in Figure 9
allows an operator to perform management operations and observe the reaction of these opera-

tions on the global state of the system.

21/22

QOS Guarantees and VPN
Control Algorithms

3.1 Introduction

From a performance point of view, there are two goals:

• End-to-end QOS: The network must guarantee cell-level QOS end-to-end to all connec-
tions it admits. The QOS should, as far as possible, be independent of the characteristics of
the underlying public network services.

• Efficient use of resources: The architecture must support statistical multiplexing of the
customer traffic within the VPN, and it must allow dynamic bandwidth renegotiation on
all control layers in order to accommodate changes in the traffic characteristics within the
customer network.

The first goal is closely related to the problem of defining an abstraction of the VPN
capacity for the customer network. (Here we understand the term capacity as a call-level abstrac-
tion, defining how many connections of a given class can be supported by the VPN, while observ-
ing the cell -level QOS requirements of each such connection.). VPN services may be provided by
multiple providers and it is likely that each of these providers use different QOS guarantees. As a
result, we argue that the requirements on the provider necessary to construct such a capacity
abstraction should be minimum, for example, based on services that are already commonly avail-
able today. Our approach is presented in Section 3.2. The second goal is achieved by implement-
ing a set of control algorithms according the control architecture outlined in Chapter 2. The
algorithms implemented are described in Section 3.3 and Section 3.4. Finally, in Section 3.5, we
present an evaluation of the performance of a system prototype implemented based on simulation.

23

QOS Guarantees and VPN Control Algorithms

3.2 Constructing a Call-Level Abstraction with Cell-Level QOS Guar-
antees

The network model we assumed is a multiclass network supporting a finite number of traf-
fic classes like voice, video, and data, each of which is defined by two sets of parameters: the traf-
fic characterization and the QOS requirements. The QOS requirements can be seen as constraints
under which the real-time control system of the customer network must operate. They include
parameters like the maximum cell delay, the maximum error rate, and the minimum average
throughput per connection.

Different customers have different requirement on their networks, including defining their
own real-time and non real-time traffic services (or classes) with specific cell-level QOS require-
ment. The customized QOS requirements are built upon services provided by multiple providers.
Therefore, an approach is required to handle the different QOS schemes between the customer
domain, and the VPN domains.

We approach the problem in two steps. First, we define a call-level capacity abstraction
called the Schedulable Region [HYM93]. Use of scheduleable region allows the customers to
define their own traffic classes according to their network requirements and provides a unified
notion of resource capacity abstraction independent of cell-level algorithms and hardware specif-
ics. Second, we describe how such an abstraction can be built using CBR VP services. We believe
that the use of CBR VP is a reasonable approach because this service is one of the basic ATM ser-
vices defined by the ATM Forum and is relatively easy to provide. In fact some public network
providers have already begin to offer such services [ATS93].

3.2.1 Cell-Level QOS Guarantee through Schedulable Region

The task of the admission controller is to accept or reject calls so as to maximize some util-
ity function under the constraint that the required QOS at the cell-level to every call admitted into
service can be met. From the point of view of the admission controller, the link capacity can be
expressed by its schedulable region S, which defines how many calls of a given class the link can
support, while guaranteeing the appropriate cell-level QOS to each class. The cell-level QOS for a
traffic class is specified in terms of bounds on loss probability and delay experienced by cells
through a network multiplexer. The schedulable region S is an N-dimensional space, where N is
the number of classes (such as voice, video, data) recognized by the link controller. The resource
state is defined by the occupancy vector x, which represents the number of calls of each class cur-

24

QOS Guarantees and VPN Control Algorithms

rently active in the link. In order to guarantee cell-level QOS to each class of traffic, the occu-
pancy vector can assume only values that are inside the schedulable region. In general, the size of
the region will depend on the statistical characteristics and cell-level QOS constraints of each
class of traffic, as well as on the details of the scheduling policy in use.

For illustration purposes, we estimated the size of the scheduleable region for a 40 Mb/s
link through simulation. In the simulation, we defined two traffic classes. The first traffic class
(Class I) is for video. It is characterized by 24 frames per second, peak rate of 6Mb/s, average rate
of 1.32 Mb/s and the cell-level QOS constraints are maximum delay of 1 ms through the multi-
plexer and no cell loss. The second traffic class (Class II) is defined for voice traffic and is mod-
eled as on-off source with constant arrivals with an exponential distributed active period and
64Kb/s peak rate. The cell-level QOS requirements for class II are maximum delay of 1 ms and no
more than 2% cell loss. A static priority scheduling is used. The schedulable region of a multi-
plexer with a 40Mb/s link is shown in Figure 10. The line in the figure delimits the schedulable
region of the multiplexer.

Schedulable Region for a 40 Mbit/s Link

10

Class I Calls

15

Figure 10 Schedulable region of a 40 Mb/s link

The admission controller must ensure that the number and class I and class II calls admit-
ted onto the multiplexer is a combination below the boundary of the schedulable region. For an
end-to-end connection, cell-level QOS guarantee is satisfied if at each multiplexer, the operating

25

QOS Guarantees and VPN Control Algorithms

point (the combination of the class I and class II after the call is accepted) is below the schedulable
region and if the following constraints are satisfied.

Delay Constraint

L^'multiplexer, + 2r/S'inkj < S

i j

Cell Loss Constraint

2ij multiplexer^ ^i linkj <£

i J

where Sj is the maximum cell delay and ^ is maximum cell loss at the multiplexer (or link) i.

The concept of a schedulable region allows a separation between cell and call control. As a
result, the call admission control policy used in this framework operates only on call level abstrac-
tions. Cell-level QOS guarantee is enforced by restricting the occupancy state of the link to below
the schedulable region. The admission control policy specifically deals only with call-level QOS
like blocking probability. This approach is very different from many existing admission control
algorithms where the admission controller operates on both call and cell statistics (see for example
[LEE96]).

3.2.2 Constructing a Schedulable Region using CBR VP

In order for a scheme that uses schedulable regions to work, the traffic classes defined by
the customer must be recognized by all of the multiplexing units. However, in the case of a Cus-
tomer Network (CN), it is unlikely that this is true in the Virtual Private Network (VPN) domain,
which is built on top of the public network. In the rest of the section, we will show how a homoge-
nous view of cell-level QOS guarantee can be built even though the Customer Premise Network
(CPN) cell-level QOS guarantee uses a cell multiplexing scheme different from the Public Net-
work (PN) using Constant Bit Rate (CBR) Virtual Path (VP).

To discuss the abstraction of communication resources within the CPN domains, we refer
to a general architecture of a broadband switch that is based on a non-blocking switch fabric (see
Figure 11). Traffic arriving at an input link of the switch is routed onto one of the output links.

26

QOS Guarantees and VPN Control Algorithms

Note that the critical resources in the switch are the output ports, each of which is controlled by a
link resource controller.

Input Linkn

Input Link m

^.Output Link

:, Schedulable Region

Link Resource Controller

► Output Link
Schedulable Region

Link Resource Controller

Figure 11 : Architecture of a typical broadband switching node in the customer network.

Given the cell-level QOS constraints, the size of the schedulable region is determined by
the following:

size of the output buffer

the buffer management algorithm

the capacity of the output link

the scheduling algorithm

the cell-level traffic statistics

We exploit the fact that both a physical link and a CBR VP are characterized by the same
parameters, namely: bandwidth, cell delay and cell loss ratio. The difference is in the factors con-
tributing to delay and cell loss. In both physical link and CBR VP, delay can be caused by propa-
gation (which depends on the length of the cable) and transmission (which depends on the size of
the packet and the speed of the link); cell loss on a physical link can be caused by errors in trans-
mission or synchronization. For a CBR VP, delay can also be caused by switching and queuing,
and cell loss through contention for buffer space in the public network domain. The following
table summarizes the discussions

27

QOS Guarantees and VPN Control Algorithms

Delay Error
Physical Link Propagation Delay (Dp1)

Transmission Delay (Dp)

Cell loss due to physical error

(Ep1)

CBRVP Propagation Delay (Dj1)

Transmission Delay (Dj2)

Switching Delay (Dj)

Queuing Delay (Dj4)

Cell loss due to physical error (Ej1)

Cell loss due to buffer contention

(E,2)

Table 2: QOS parameters for physical and logical links

Thus, given a CBR VP (of a specific bandwidth) with bound on maximum delay and loss,
construction of schedulable region can proceed as if the output link is a physical link with the
same bandwidth. The size of the schedulable region of the combination of the multiplexer and log-
ical link of 45 Mb/s will be the same as if we have a 45 Mb/s physical link, with modifications
needed to the cell-level QOS provided to take into account the additional delay and loss due to
queuing, transmission and switching introduced by the CBR VP. In particular, the maximum cell
delay is equal to the sum of the maximum delay over the multiplexer and the logical link. The
maximum cell loss ratio is (1.0 - (1.0 - cell loss ratio over mulitplexer)*(1.0 - cell loss ratio over
CBR VP)).

cell traffic CBRVP

(variable size)

CPN
Switch output port (multiplexer)

Figure 12 : Construction of scheduleable region using CBR VP

PN
Logical Link

28

QOS Guarantees and VPN Control Algorithms

Using such an approach, the customers can choose traffic classes with QOS specifications
that are totally independent of the provider. Negotiation of resource between CPN and PN is a
matter of finding the logical link bandwidth corresponding to the desired schedulable region size.

As it is expected that bandwidth negotiation is done in discrete step size, the mapping
between logical link size and schedulable region size can be computed off-line by the customer
and put into a table. An example of such a table is given in Table 3 . The table has two columns.
The right column contains possible bandwidth of the logical link, in this case measured in terms
of megabits per second (Mb/s). The left column contains the corresponding size of the schedula-
ble region for each logical link size. For example, if the size of the logical link is 15 Mb/s, the size
of the schedulable region is Regionl5. By constructing such a table, dynamic bandwidth negotia-
tion between the CPN and PN can be done in units of Mb/s, even though within the customer
domain, bandwidth negotiation is performed in terms of schedulable region.

Logical Link
Capacity (Mb/s)

Schedulable Region of Multiplexer

10 Region 10

15 Region 15

100 Region 100
Table 3: Mapping between Link Bandwidth and Size of Schedulable Region

With the resource abstraction given in terms of schedulable region, control algorithms can
now be designed so that they do not deal with the specifics of cell-level multiplexing and instead
deal with only call-level capacity abstractions. This is the topic of the next section.

3.3 Review of VP Control Algorithms

Many classes of control algorithms can be implemented using the framework provided by
the functional model and generic controller design described in Chapter 2. In particular, a large
class of VP bandwidth allocation algorithms that was previously used mainly in the provider's
domain can now be applied in the customer domain. Using the architecture framework described
in Chapter 2, we characterized these VP algorithms according to the time-scale and the controller
on which they run on.

29

QOS Guarantees and VPN Control Algorithms

A large class of VP allocation algorithms can be run by VPG controller(s). For a survey of
some of these algorithms see [ANE96]. These algorithms tend to be centralized, and capacity dis-
tribution is computed based on medium- to long- term measured traffic statistics. The time-scale
on which these algorithms run is very important to their design. Some of these algorithms are used
by the network provider for dimensioning of the network size, which occurs on a very slow time-
scale. On the other hand, in [LOG95] a "medium time-scale" VP redistribution algorithm is pro-
posed. In this paper, the author highlights the importance of choosing the correct redistribution
period. It is argued that the bandwidth reallocation time (BRT) should be large enough so that
existing traffic has the time to leave the network. For traffic with exponential holding time of mean

100s, they suggest a BRT of 30 minutes (1800s).

VP bandwidth reallocation algorithms can also be run by a VP controller. These algorithms
are usually triggered by specific changes in the VP utilization. For example, [OHT92] and
[ORD96] describe two state-based dynamic VP bandwidth renegotiation algorithms. In [OHT92],
a fixed amount of bandwidth is requested when the utilization of the VP crosses a high "water-
mark". On the other hand, bandwidth is released when the utilization crosses a low "water-mark".
A similar approach is used in [ORD96]. The difference (and improvement) comes from requesting
and releasing variable amounts of bandwidth, which will depend on the call arrival and departure
statistics. The algorithm described in [ORD96] is more efficient but is significantly more complex
to implement than the algorithm in [OHT92]. The time-scale on which these algorithms run
depends on the call arrival and departure statistics.

Control across different control layers can be coordinated in order to achieve a possibly
better system performance by organizing the system as a hierarchical structure. This is the
approach taken in [PIT95], where multilevel optimal control is performed. A three-level hierarchi-
cally organized control structure is used. The overall objective is to optimize objective functions
that minimize the sum of the difference between the desired and measured delay and switching
bandwidth allocated to a specific traffic class within a VP. On the lowest level, the local controller
solves a set of low order linear difference equations that assumes that the predictions on the queue
state and allocated service rate are exact. On the higher level, the controllers attempt to force the
prediction of the delayed terms equal to their true values. Successive iterations (if they converge)
will ensure that the predicted trajectories are the same as the true trajectories. It should not be dif-
ficult to see that this control structure can be implemented in a rather straightforward way using
our architectural framework.

3.4 Realization of the Control System

30

QOS Guarantees and VPN Control Algorithms

In this section, we provide a detailed description of an implementation of the control sys-
tem architecture described in Chapter 2. In particular, we would like to highlight new possibilities
available due to the introduction of the VPG concept. Specifically, since VP bandwidth allocation
can be performed entirely within the customer domain without interacting with the provider, we
implemented a centralized VP algorithm that exploits multiplexing on the VPGs among VPs from
different source-destination pairs. This algorithm runs on the VPG controller and periodically
redistributes the VP bandwidth based on the current state of the VPs, and the measured call arrival
and departure statistics. The bandwidth of all VPs is changed simultaneously, and needs to be per-
formed frequently for efficient distribution of VP capacities. In a VP-based VPN, such an algo-
rithm will be considered impractical due to the frequent interactions it needs to make with the
public network provider management system. It is, however, a reasonable choice in a VPG-based
VPN, since all control interactions are performed within the customer domain.

The algorithm we have developed is different from those described in [OHT92] and
[ORD96] in the following way. First, although redistribution is based on the current state of VPs,
the algorithm is centralized and runs in the VPG controller, instead of being distributed and run-
ning on the VP controller. Second, redistribution is performed periodically, every T seconds,
instead of being triggered by a change in the state of the VP. The parameter T provides an explicit
and direct way in which the management system can influence the behavior of the VPG controller.

3.4.1 VP Controller

The admission control algorithm implemented on the VP controller is based on the Multi-
dimensional Threshold Control policy (MDT), a form of complete partitioning (CP) policy
[HYM91]. This policy is designed to achieve the blocking constraints for each class by the impo-
sition of thresholding rules. Let z be the threshold vector, S be the schedulable region and, x =

(x\...,xn), where x1 is the number of calls in the system of class i; then define the policy u as

u (x) = 1 if({xl < z} A {x + e G S})

0 otherwise

where u'(x) = 1 if a call of class i can be accepted, and 0 if otherwise.

31

QOS Guarantees and VPN Control Algorithms

In this policy, each class, in effect, is allocated its own dedicated bandwidth, and no call-
level interference between classes takes place. Modeling call arrivals as Poisson processes and

assuming that the holding time of calls is exponentially distributed, the blocking probability p1 for

class i is given exactly by p\u) = E(V I U1, z1) where E(A,N) is the one-dimensional Erlang-B for-
mula:

E(A,N) =
N

A /N\
N

I A*>«
I = 0

where K1 is the blocking objective for class i. The threshold z1 is thus chosen as the smallest
(or minimum) amount of bandwidth N such that the blocking probability calculated using the one-

dimensional Erlang-B formula is less than or equal to the blocking constraint K1. Mathematically,
this is expressed as the following equation:

min
z = • • • N

E(Xl/[i\ N) < K

The CP admission control algorithm used has the advantage that it tends to divide the
resources "fairly" among the traffic classes according to the blocking objectives. By computing the
thresholds used in the policy dynamically during run-time, the algorithm is also able to adjust to
variations in traffic load. Perhaps, more importantly, the behavior of this algorithm can be influ-

enced by management operations by changing the values of K1, the blocking objective for class i

traffic. Changing K1 causes the corresponding threshold z1 used by the MDT algorithm, and thus
the admission policy, to be changed.

Conceptually, the surface of the schedulable region can be highly irregular. However, the
storage and manipulation of a general N-dimensional space can be rather expensive. Therefore, all

surfaces are approximated as a N-dimensional hyperplane, which can be expressed in the form X

x1 / N1 = 1, where N1 is the maximum number of calls of traffic class i that can be allowed into ser-

vice. Algebraically, the approximation involves finding all the N1. There is, however, no unique

32

QOS Guarantees and VPN Control Algorithms

solution to the approximation. As shown in Figure 13., more than one possible approximation is
possible. (In fact, there are infinitely many of them). One way to decide on an approximation is to

fix the ratio N'/N-", for all i not equal to j. Some possibilities for these ratios are to let N1 equal to
the average bandwidth, peak bandwidth, utility or some combinations. Another approach is to

choose the surface that maximize the utility function X u1 N1, where u1 is the utility of class i calls.

Figure 13 shows two possible approximations for a 2-dimensional schedulable region.

Class I

Approximation 1

 Approximation 2

Class II

Figure 13 Approximating the scheduleable region with a hyperplane.

Depending on the size of the scheduleable region, it is possible that the hypercube formed
by the boundaries of all the thresholds will be either under or above the boundary of the schedula-
ble region. In the case where the hypercube is below the boundary of S, the thresholds are
increased to allow for better utilization of the resources; in the case where the hypercube is above
the boundary of S, the thresholds are decreased so as to maintain some sort of "preference"

among traffic classes. The heuristic in this case is to use a new set of thresholds (z'p) that forms

the largest hypercube that is below the boundary of S and such that the ratios among thresholds
are maintained. Since the schedulable region is represented as a hyperplane, the new thresholds
can be computed using a simple vector projection operation given as follow:

F =
1

X-
z p = Fxz

33

QOS Guarantees and VPN Control Algorithms

Figure 14 illustrates the projection operation F graphically. In Figure 14(a), the thresholds
calculated form a rectangle below the boundary. In order to increase utilization, the thresholds are
increased by the projection operation into a larger box. Figure 14(b) shows the reverse case where
the rectangle forming the computed threshold is above the boundary. The thresholds are decreased
using the projection operation so that the new thresholds are smaller and the rectangle is below the
boundary surface.

Class I Class I

Class II Class II

Figure 14 : Projection of thresholds

During durations of overload, when the demand for bandwidth is much higher than the
amount of bandwidth available, the control objective could be different from control under normal
conditions. In particular, during periods of overload, it might be more important to guarantee the
blocking constraints of certain classes of traffic than for others. Such control objectives can be
achieved through the use of a priority scheme.

A straightforward implementation of a priority scheme is to accept a call of higher priority
as long as there is sufficient capacity available. Pre-emption of calls of lower priority is allowed if
necessary. Such an implementation poses a problem in terms of blocking objectives in the sense
that calls of high priority do not experience blocking at all, as long as there are calls of lower prior-
ity in the system. The blocking probability of calls in a certain traffic class then depends only on
the capacity of the VP, and has nothing to do with the blocking constraint of the class.

34

QOS Guarantees and VPN Control Algorithms

One possible solution is to define two separate objectives. One objective deals only with
blocking constraints and the other deals only with priority. Admission control can thus be exe-
cuted with either one of these objectives. Blocking constraints can be used for example in normal
load conditions, and priority used in overload conditions.

The approach we took is to integrate both objectives into the same framework. Each call is
associated with a performance characterization and a priority. Priority is considered purely as a
policy (when there is no spare capacity, high priority pre-empts low priority calls). Blocking
remains then as the only objective to be met, and the priority of a call implies how faithfully (or
with what priority) its blocking objective should be respected. Once the actual admission control
algorithm implemented, a variation of the MDT algorithm enhanced with the notion of priority, is
described as followed:

(1) When a call with blocking objective K1 and priority L1 arrives, if the link utilization is
less than a (< 1.0), accept the call or else go to (2).

(2) Accept the call with probability (1-K1) and reject the call with probability K1. If the call
is to be accepted and the VP is full, pre-empt the minimum number of calls with lower priority
such that this call can be accepted. If there are not enough calls of lower priority in the system
such that this call can be accepted, the call is blocked.

The algorithm implemented has the following characteristics. First, in times of overload,
calls of higher priority will experience actual blocking probabilities close to the specified objec-
tives (as long as there are calls of lower priority to pre-empt). Second, when the value a is set to a
value less than 1.0 and the system is not heavily utilized, calls of higher priority can take advan-
tage of the availability of resources and will experience blocking probabilities less than the speci-
fied objective. This algorithm has the advantage that it works with any level of priorities.
Experience from the simulation shows that the algorithm is simple to implement and can be exe-
cuted very efficiently.

3.4.2 VPG Controller

In order to exploit statistical multiplexing among VPs from different source-destination
pairs, the VPG controller periodically redistributes the capacities among the VPs. The algorithm
takes into account the blocking objectives, the period of distribution, the current operating point
of the VPs, and the call arrival and departure statistics measured.

35

QOS Guarantees and VPN Control Algorithms

The implemented centralized algorithm runs periodically. The algorithm executed in each
cycle is described as follow:

Step (0): Check if the previous computation has terminated. If it has not, go to (5)

Step (1): For each VPG i, calculate the weight of VP j on VPG i. Let this weight be WjJ.

Based on this weight, calculate the bandwidth that VP j (BWjJ) is getting from VPG i, whose band-

width is BWj using the equation

BWJ = —xBW-
1 ^ j l

S«7
J

Step (2): For each VP j, calculate the amount of bandwidth it is allocated, BWJ, using the
equation:

BWj = min(BW/)

Step (3): If there is any unassigned bandwidth left in any VPG, form a candidate list con-
taining all the VPs. Pick a VP at random and assign it the maximum possible bandwidth. Remove
this VP from the list. This step ends when either all VPG bandwidth has been assigned or there are
no more VPs left in the list.

Step (4) (a): Divide the VPs into two groups: "small" and "large". VPs whose new alloca-
tions are less than the current allocation are in the "small" group, or else they are in the "large"
group.

Step (4) (b): Send out an allocation of VPs in the "small" group and wait for acknowledge-
ments from all these VPs.

Step (4) (c): All acknowledgments have been received. If the allocation fails on any of the
VPs, the allocation fails. The original VP bandwidth is sent out to all VPs in the "small" group to
execute a rollback operation. If all allocation on "small" VP succeeds, send bandwidth to "large"
VPs.

36

QOS Guarantees and VPN Control Algorithms

Step (5): End of computation cycle.

Step (4) is necessary due to the fact that the states of the VPs are distributed. Changing
these states has to be coordinated so that at any time, the sum of the capacities allocated to the
VPs do not exceed the capacity of the VPGs they pass through. The solution is to divide VPs into
two groups. The first group ("small" group) consists of VPs whose new allocations are smaller
than the current allocation; the second group ("large" group) consists of VPs whose new alloca-
tions are larger or equal to the current allocations. In the first phase, only allocations of VPs in the
"small" group are sent, in the second phase allocations of VPs in the "large" group are sent. Note
that VP controllers who receive allocations in the second phase have larger or equal allocation and
therefore have no problem.

When the VP controller receives a request for a change in bandwidth and cannot execute
the request immediately, it can react in two ways. It can either reply immediately with an unsuc-
cessful message or it can stop accepting new calls, while allowing existing calls to depart. Eventu-
ally, its utilization will go below the new allocation, and when this happens, the VP controller
replies with a successful message and can again accept new calls. The first solution has the advan-
tage that the duration of an allocation cycle is bounded and usually short. It can, however, fail to
change the VP bandwidth frequently when the system is heavily loaded. As a result, VPs that
experience a heavy load earlier tend to have more bandwidth allocated. On the other hand, the
duration of an allocation cycle in the second solution can be long. However, even with a heavy
load, the allocation always succeeds.

Using a reasonable value for the period of computation, a computation cycle in the first
solution usually terminates before the start of the next cycle. If the previous computation has not
been completed, a new allocation is not allowed to start so that only one allocation process is
allowed at a time (Step 0).

If the VPG controller receives one or more unsuccessful messages, it aborts all changes
performed in the first phase. This operation is similar to the roll-back operation in a 2-phase com-
mit protocol used in database management system. The second phase will not be executed.

Note that it is not specified in step (1) how the weight of a VP should be computed. In the
following, we present two possible approaches to computing the weight of a VP. The first
approach is computationally intensive and is not suitable for real-time control. It can, however, be

37

QOS Guarantees and VPN Control Algorithms

considered as the reference case for the second approach, which is based on a heuristic that
attempts to approximate the first approach.

3.4.3 Exact Approach to Weight Computation

We formulate the exact approach as follow.

For a given traffic class x, we model the VP as a M/M/C/C queue where C is the maximum
number of calls of class x it allows into service. The dynamic behavior of the states of the VP is
described by the Chapman-Kolmogorov equation for continuous-time Markov chains [KLE75]:

Let Pjj(t) be the probability that the state of the VP goes from initial state i to state j in time

t. The set of differential equations that describe the transition from state i to state j in time t are:

-^r = -XPi0(t) + [iPn(t)

dP..(t)

dPiC(t)
-^— = XP.cl(t)-[iCPiC(t)

/>/,C + »W = 0,n>0

where A, = arrival rate of class x calls and |i, = service rate of class x calls. These equations
can be rewritten in matrix form as:

d-^i = AP(,)
at

where P is the matrix whose element at the i row and j column is Py(t). Solving these dif-

ferential equations translates into finding the eigenvalues and eigenvectors of a CxC tri-diagonal
matrix. The solution is given in [RI062] as:

38

QOS Guarantees and VPN Control Algorithms

Pij(t) = F / + -p Y r1 e *

Xp7/7'! J' r rDc(r)DC(r+l)

where p = A/J1, r is an eigenvalue of A and Dj(r) is defined recursively as:

DQ(r) = 1

D{(r) = p + r

D
n+i(r) = (p + « + r)Dn(r)-p«Dn_1(r)

The eigenvalues of A are real and simple (pp. 82, [RI062]). The solution to Pjj(t) nicely

captures the dynamics of the transitional behavior of the multi-server queue. The first term of the
equation is the equilibrium probability pj, forming a truncated Poisson distribution. The largest

negative eigenvalue, say r1; governs the rate of approach to the steady state. For p much larger

than C, this root is near -p; for p=C, it is -2; it approaches -1 as p approaches 0.

Let Kx be the blocking constraints associated with each traffic class JC. Given that the state
of the VP at time t is i, and the period of bandwidth recomputation is T, the smallest amount of
bandwidth needed to satisfy the required blocking constraints is the smallest C that satisfies the
following equation:

+ T 1 ? + 1 y
j)t PiCWt<K

The value of C for each traffic class is computed separately. The weight of a VP is the
bandwidth that corresponds to the smallest schedulable region that contains the hypercube formed
by these thresholds.

39

QOS Guarantees and VPN Control Algorithms

Note that by using these weights, if sufficient capacity is available in the network, the VP
controllers will always be able to guarantee the cell- and call- level QOS guarantee.

In order to show that the blocking probability can be calculated this way, we need to show
that the PASTA property holds in a finite time. This is in fact true. The proof can be found on pp.
295 of [WOL89] and will not be reproduced here.

On a IBM/390 series workstation, using the LAPACK software[AND94], the computation
time for finding the eigenvalues and eigenvectors of a CxC matrix are as follow:

Dimension (C) Time (Seconds)

100 x100 0.26

250 x 250 2.44

500 x 500 17.8

1000 x 1000 226
Table 4: Performance of LAPACK on a IBM/390

Numerical instability, in the form of complex and non-simple eigenvalues, is observed

when the ratio C/p is too big. For example, if p = 30, all eigenvalues computed are real and simple

only if C is less than or equal to 113.

Based on the actual eigenvalues computed, it is further observed that all eigenvalues must
be used in the computation of PyCt), even if these eigenvalues are very small (which should make

er^t very small). This js because the coefficient of the terms can be very large, and the final product

is not negligible.

This exact approach to weight computation is obviously not practical for a real-time imple-
mentation, but it serves as a good reference for judging the performance of the heuristic algorithm
to be presented next.

3.4.4 Heuristic Approach to Weight Computation

The heuristic weight computation is an attempt to approximate the weight computed in the
exact case and is given by the equation below:

40

QOS Guarantees and VPN Control Algorithms

Weigh, = ^-log^+(PX?-x0.01) + ,-

Nx

The heuristic is based on the assumption that when the queue is empty, a certain minimum
amount of bandwidth is needed to handle the anticipated arrival within the next computation
period. The additional amount of bandwidth required increases linearly with the number of calls
in the system. For each traffic class, there are two components to the weight. The first is the initial
offset, which depends on the blocking objective, the traffic intensity and the computation period.
The second component varies linearly with the current number of calls. The denominator is the
normalization constant. A comparison with the exact values obtained in Chapter 3.4.3 shows that
this approximation is reasonably close to the exact values in the range of T between Is and 100s.

3.5 Evaluation of the Control System

The performance of the implementation described in Section 3.4 was evaluated in a sce-
nario based on the topology of the NYNET testbed. Only the VPG and VP control layers were
implemented. An important characteristics of our evaluation is that we run an executable model of
the control system that runs on top of the emulation platform described in chapter 5. Each control-
ler is implemented as a C++ object, and we simulate the exchange of signalling messages. Both
delays and message passing time are modeled in the simulation.

In this scenario, a VPN service interconnects 6 CPNs. The VPN contains 14 unidirec-
tional VPGs which support 30 unidirectional VPs, connecting the 6 CPNs in a full mesh topology.
The two VPGs in the middle carry 9 VPs, the remaining VPGs carry 5 VPs each (Figure 15).

41

QOS Guarantees and VPN Control Algorithms

Syracuse University

Cornell University Qp R^ Laboratory

NYNEX Syracuse

NYNEX White Plains

Columbia University \^J StonyBrook

Polytechnic University

D
o

VP Switch in Public Domain
VPN Termination Point in CPN
VP
VPG

Figure 15 Network topology used in the evaluation

C

We model the network traffic load, the processing time of controllers and the time delay to send a
message from one controller to another. For the sake of simplicity, all message processing time
and message delivery time is set to 1ms. The computation time for a new VP distribution is
assumed to be 100ms in all cases.

The network traffic is composed of two classes with different bandwidth requirements. A
class 1 call needs ten units of bandwidth, while a class 2 call requires 1 unit of bandwidth. The
holding time of the calls of both classes is exponentially distributed with a mean of 100 seconds,
and call arrivals are modeled as Poisson processes. The arrival rate for class 1 call is 0.12 call/sec-
ond and class 2 call 0.50 call/second. Finally, the blocking objectives are 0.10 for class 1 calls and
0.01 for class 2 caffs. All VPs in the VPG link experienced the same offered load. The VPG links
between Syracuse and White Plains have 180 units of bandwidth, and all other VPG links have
100 units of bandwidth.

We vary the bandwidth computation period (T) in the experiment and measured network
blocking rate for three cases:

42

QOS Guarantees and VPN Control Algorithms

• Static VP bandwidth allocation. Each VP is given 20 units of bandwidth and the MDT
algorithm is used for admission control.

• Dynamic bandwidth VP bandwidth reallocation using exact weight computation and the
MDT algorithm is used for admission control.

• Dynamic bandwidth VP bandwidth reallocation using heuristic weight computation. A
complete sharing policy is used in the admission control algorithm.

Figure 16 and Figure 17 show the blocking rates for both Class 1 and Class 2 calls. From
the figures, it can be seen that both the exact and heuristic algorithms perform significantly better
than static allocation and the blocking objectives are met by these dynamic algorithms in most
cases. As expected, the performance of the exact algorithm deteriorates as the computation period
increases. In fact, when T is large enough, the exact algorithm becomes the static allocation algo-
rithm. As a result, the performance of the heuristic algorithm can be better than the exact algo-
rithm when T is large. From Figure 16, we can see that for T > 30s, the heuristic algorithm out-
performs the exact algorithm for class 1 calls. On the other hand, it is also true that if it is possible
to use a T that is small enough, the blocking rate of a system running the exact algorithm can be
made very small. This is not true in the case of the heuristic algorithm.

/
s

*,, X

"

r
i

i

t

„u. ,..._

 Heuristic
 Computed

/ / /

20 40 60

Bandwidth Reallocation Period (sec)

80 100

Figure 16 : Performance of VPG Algorithms for Class 1 Traffic

43

QOS Guarantees and VPN Control Algorithms

3
d

Objective
Static
Heuristic
Computed

20 40 60

Bandwidth Reallocation Period (sec)

100

Figure 17 : Performance of VPG Algorithms for Class 2 Traffic

44

The High Performance
Platform for
Experimentation

4.1 The Platform

The platform used for implementing the prototyping environment consists of a supercom-
puter (either the KSR-1 or SP2) located at the Cornell Theory Center (CTC) in Ithaca, New York,
connected to an SGI Indigo2 at Columbia University in New York, New York. These two
machines are connected by a permanent virtual circuit connection (PVC) through NYNET, an
ATM network that connects several research laboratories in New York State.

Syracuse

Cornell Theory Center

IBM SP2 KSR-1
(512 Processors) (128 Processors)

SGI Indigo 2
Columbia University

Figure 18 Hardware configuration of the interactive emulation platform.

45

The High Performance Platform for Experimentation

The bandwidth B required by the connection is given by B = LM * NO * R, where LM is
the size of the monitoring data unit, NO is the number of objects being monitored, and R is the
refresh frequency. When NO=500 objects, LM = 512 bytes, R=l/sec, B is approximately 2 Mbit/
sec. When the communication between the two machines is performed over Internet, both the
number of objects monitored and the refresh frequency must be reduced to accommodate the
lower bandwidth connection. In this case, our experience shows that, even with a reduced monitor-
ing load, the packets carried over the Internet connection can experience delay variations of up to a
few seconds. The ATM connection currently in use has been shown to be very useful for our pur-

poses, providing higher throughput with lower delay jitter.

The parallel simulation kernel has been implemented on two platforms with different hard-
ware architectures: the IBM SP2 (distributed memory) and the KSR-1 (shared memory). The sim-
ulation kernel was first implemented on the KSR-1. These implementations differ, in particular
with respect to realizing message passing and referencing of objects. For the point of implement-
ing a simulation kernel, message passing is important because the programming model of simula-
tion is one of objects (or logical processes) exchanging messages. Therefore, while message
passing is the "natural" programming paradigm on the SP2, we have to "imitate" message passing
on the KSR-1 using shared memory.

In the remainder of this chapter, we will describe some of the knowledge we have gained
through using these supercomputers, in particular the performance of simulating message passing
on the KSR-1 and the porting process.

46

The High Performance Platform for Experimentation

4.2 Building an Emulation Platform on the KSR-1

The KSR-1 is a shared memory parallel machine with hardware support for maintaining
cache consistency. Each node has a 40-MFlops processor and 32 Mbytes of local cache memory.
Processors are organized in ring hierarchy. Ring 0 has 32 processors and ring 1 has 34 ring Os
(Figure 19). The memory access time follows the same hierarchy. Memory access takes less than
lms within the local processor, 8.75ms within the same ring 0, and 30ms within the same ring 1.
The operating system is MACH, and the OSF-1 pthread package is provided to exploit the shared
memory architecture of the machine.

C~~ RING:1
Search
Engine:0
Directory

I Search Engine:!

Search
Engine:0
Directory

1 RING.-O

Local
Cache
Directory

Local
Cache
Directory

Search
Engine:0 Local

Cache
Local
Cache

Processor

1

Processor

APRD Cel APRD Cell

Search Group :0

Figure 19 Hardware configuration of KSR-1

47

The High Performance Platform for Experimentation

4.2.1 Benchmark Measurement on the KSR-1

As the KSR-1 was our initial experimental platform, we spent substantial time on the study
of emulation performance of the KSR-1. The primary goal of this study was to estimate the perfor-
mance of emulating large networks on a KSR, to identify major performance bottlenecks in an
emulation system, and to suggest a system structure for emulation that reduces the impact of these

bottlenecks. We emulated network mechanisms as (operating system) threads and implemented a
message passing system to support asynchronous communication among mechanisms. Emulating
large broadband networks thus involves executing a large number (hundreds) of threads of control,
which cooperate in an asynchronous manner, using a message passing scheme for inter-thread
communication. Operating system threads on the KSR-1 are available to the programmer as
pthread, a POSIX threads standard (PI003.4a).

We did two kinds of performance experiments. First, we measured the performance of
implementations of the bounded buffer paradigm [AND87]. In the bounded buffer problem (also
known as the producer-consumer problem), two processes shared a common, fixed (and bounded)
size buffer. One of them, the producer, puts information into the buffer, and the other one, the con-
sumer, takes it out. Potential contention arises when both the consumer and producer want to
access the buffer at the same time, and when the buffer is either full or empty. We chose to study
this problem because of the way it captures the programming model of the message passing
scheme used. Secondly, we studied the performance of a traffic control system that runs on top of
our message passing scheme.

In our implementation of the bounded buffer paradigm, we found that the numbers of pro-
ducers and consumers, as well as the ratio of consumers/producers, are the parameters that show
the most significant impact on the performance. Having one producer and one consumer per buffer
gives the best performance. Increasing the number of producer/consumer pairs results in a sharp
drop in performance, roughly with 0(l/n), with system size n. Also, the farther the ratio producer/
consumer is from 1, the worse the performance gets.

We also found that synchronizing multiple pthreads, using mutual exclusion locks (or
mutex locks) and condition variables [BOY93], gets prohibitively expensive, when the number of
threads waiting on the same condition variable increases. We therefore conclude that the number
of threads that access the same critical region should be kept to a minimum, in order to prevent a
drastic decline in system performance.

48

The High Performance Platform for Experimentation

In general, the performance depends on the pattern of interaction among nodes of the sys-
tem. Take the example of two systems with extremely different communication patterns: a point-
to-point communication pattern and a point-to-multi point communication pattern. If we express
the performance of these systems as the number of messages per second to be exchanged between
nodes, we get the following peak performance on a 64 processor set: 980,000 messages/sec for
the former case and approximately 160,000 messages/sec for the latter. As mentioned above,
these systems exhibit extremely different communication patterns. For a typical subsystem of a
broadband network, we expect the communication pattern to be a mixture-broadcasts among
subsets of nodes as well as one-to-one interaction-and, therefore, we estimate its peak perfor-

mance to be in between the above given figures.

4.2.2 Experiences with Emulation of a Traffic Control System

By emulating a simple traffic control system (TCS), one that involves performing resource
allocation tasks and executes a signalling protocol among network mechanisms, we encountered
three problems that made stable performance for emulating a large network difficult: performance
degradation due to serialization of KSR system calls, synchronization among mechanisms, and
extensive context switching caused by the fine grain application we ran. We briefly summarize the
problems and solutions we implemented in the emulation system.

Serialization of KSR System Calls

Some system calls in the KSR operating systems are serialized: "malloc()" and "free()"
are two of them. For systems that perform many memory allocation calls, mechanisms spend an
increasing amount of time waiting to acquire the lock that protects the global data structure, as the
system size (and the number of mechanisms) gets large.

We verified this hypothesis through two measurements. We ran our traffic control system
with two different libraries. The first library uses "malloc()" and "free()" with no consideration
for their cost due to serialization. The second library uses an application-level memory manage-
ment scheme that attempts to minimize these calls. In order to observe the effect of serialization,
only mechanisms within the same network node interact. This is done by modifying the routing
policy such that it generates only the address of the link controller in the same node. Since inter-
acting mechanisms run on the same processor, the impact of remote memory access, contention,

and thread scheduling is minimized.

49

The High Performance Platform for Experimentation <

Figure 20 shows the difference in performance between using and not using application-
level memory management. When application-level memory management is not used, the
throughput is low for a small system size and remains at that level as the system size increases.
With application-level memory management, the throughput is significantly higher for systems of

up of 128 network nodes.

o

Th
ro

ug
hp

ut

0

50

00

10

00
0

15

00
0

20

00

 Without Memory Management
 With Memory Management

12 3 4 5 6 7

log2(Nodes)

Figure 20 Impact of serialization of memory management system calls

Threads Synchronization

Since our system model is implemented as a large number of pthreads, interacting asyn-
chronously by exchanging messages, synchronization among threads can get prohibitively expen-
sive. Consider an implementation where a mechanism writes directly to the input message buffer
of another mechanism (see previous section). If many threads attempt to access a buffer within a
short time and the thread that is currently holding the buffer lock is scheduled out, then all threads
waiting on the lock have to wait for this thread to run again. This happens more often as the num-
ber of threads (system size) increases.

50

The High Performance Platform for Experimentation

The use of the communication kernel provides one way of reducing expensive thread syn-
chronization. First, no more than two threads wait on a buffer. Further, when a network mecha-
nism blocks on accessing one of its buffers, it does not have to wait for a long time, because the
thread holding the lock is a communication thread, which is never scheduled out.

Figure 22 shows the performance difference between using and not using a communica-
tion kernel. In this experiment, 4 processors are dedicated for communication. For the system that
does not use a communication kernel, the performance is good for a small system size, but drops
very rapidly when the system size exceeds a certain threshold (32 nodes in this case). On the other
hand, the system that uses a communication kernel exhibits stable performance up to 168 nodes.
In addition, if the system size is larger than 64 nodes, the throughput of the system that runs on a
communication kernel is always better than the throughput of the system that does not.

o

o o o

o o o

o o o
CO

o o o
CM

o o o
~~~—\—^_ 

3 4 5 

log2(Nodes) 

Figure 22 Impact of using communication kernel for emulation 

In the next two experiments, we investigate how performance of the TCS is influenced by 
the amount of resources allocated to the communication kernel. In the first experiment, we fix the 
size of the system and vary the number of communication processors. In the second experiment, 
we fix the number of communication processors and vary the system size. 

51 



The High Performance Platform for Experimentation 

In the first experiment, the size of the system is 64 nodes and the number of processors 
allocated to communication is increased from 1 to 32. Figure 23 shows that the throughput of the 
system increases almost linearly with the system size. From this measurement, we see that the 
characteristics of the emulation system is such that more resources (up to 32 processors) can be 
allocated to communication (and less to computation) to achieve better overall system perfor- 
mance. 

Q. 

D> 
3 
O 

o o o 
CO 

o o o 

O 
O o 

o o 
LO 

10 15 20 

# of comm. threads 

25 30 

Figure 23 Impact of increasing communication resources (constant system size) 

Figure 24 shows the result for the second experiment. We run the TCS with three different 
numbers of communication processors: 4, 8, and 16. The throughput of the system improves sig- 
nificantly when the number of communication processors increases from 4 to 8. However, when 
increasing the number of communication processors from 8 to 16, the performance gain is signifi- 
cant only up to 32 nodes. We attribute this drop in performance gain to two factors. First, as the 
number of communication threads increases, the frequency of them trying to access locks that 
have already been acquired increases. Hence, on the average, a communication thread has to per- 
form more tries to acquire a lock before getting access to one. Second, more resources (8 CPU) are 
dedicated to communication and less to computation. Therefore, for large systems, the gain in 
communication performance is partially offset by the loss in computational performance. 

52 



The High Performance Platform for Experimentation 

o 
o 
o 

o o 
—     o •g     TO 

-3 O o     o 

ß  N 

o o o 

     4CPU 

"" ~~~~~---^ 

2 3 4 5 6 

log2(Nodes) 

Figure 24 Impact of increasing system size (constant communication resources) 

Context Switching Overhead 

The overhead of context switching can be significant, if the amount of work done by a 
thread between context switches is small. In our application, this happens when a consumer, wait- 
ing on an empty buffer, wakes up and finds only one message (or very few messages) in the buffer. 
As the time it takes a thread to service a message is short in our application (of the same order of 
magnitude as a context switch), the thread finishes its work in a relatively short time, and waits on 
the empty buffer, causing another context switch. 

We influence thread scheduling, by using conditional variables in a novel way, so that the 
amount of work done by a thread between context switches is increased. When a consumer waits 
on a conditional variable, instead of waking it up when there is one message in the buffer, it is 
woken up only if there are x (x>l) messages in the buffer (in implementation terms, we perform a 
"cond_broadcast()" call only if the number of messages in the buffer is equal to x). The same 
strategy applies to a producer. As a result, when a consumer or a producer is put in the run queue, 
there are at least x messages in the buffer. 

Figure 25 shows the performance gain by influencing thread scheduling in such a way. 
The solid line graph shows throughput for x = 10, and the dotted line graph shows throughput for 

53 



The High Performance Platform for Experimentation 

x = 1. The gain in performance is significant for system size of 64 nodes or more. In this experi- 
ment, the system uses application-level memory management and runs on a 4 processor communi- 

cation kernel. 

O o 
1/1 

o o o 

o o 
in 

3 4 5 t 

log2(Nodes) 

Figure 25 Impact of influencing thread scheduling 

54 



The High Performance Platform for Experimentation 

4.3    Porting the Emulation Platform from KSR-1 to SP-2 

The IBM SP2 has a distributed memory architecture. Each node consists of a 266-MFlops 
POWER2 processor, which runs its own copy of the AIX operating system, and has between 64 
and 2048 Mbytes of memory. The parallel programming environment we use is based on the Mes- 
sage Passing Interface (MPI) [MPI94] package. As opposed to the KSR-1, communication among 
processes on different processors is possible only through message passing. The benchmark for 
interprocess communication is therefore not dominated by memory access time and synchroniza- 
tion, but by the time delay to send messages from one processor to another. For the current MPI 
implementation on the SP2, sending a 200-byte message from one node to another takes about 
50ms. Since communication on the SP-2 is off-loaded to a communication processor, communi- 
cation and computation can often overlap. 

The major differences between a shared memory machine and a distributed memory 
machine are summarized below. 

Address Space 

Shared Memory 
Machine (e.g. KSR1) 

Shared Address Space. 

Distributed Memory 
Machine (e.g.SP2) 

Address space is not 
shared. 

Inter-Process Communica- 
tion 

Shared Memory Access 
(Mutual Exclusion). 

Message Passing (e.g. 
MPI). 

Table 5: Shared Memory vs. Distributed Memory 

Since the programming model for the simulation kernel remains the same, much of the 
code can be reused. What needs to be changed, however, are the ways objects are referenced (and 
named) and how local clocks are synchronized. 

55 



The High Performance Platform for Experimentation 

Tasks 

Object References and 
Location 

Clock 

Synchronization 

Shared Memory 
Machine (e.g. KSR1) 

Object references are 
pointers. Shared address 
space makes locating 
another object trivial. 

Local clocks are easily 
synchronized using a sin- 
gle shared memory vari- 
able. 

Distributed Memory 
Machine (e.g.SP2) 

Mapping from name to 
location (which processor) 
is needed. 

A clock synchronization 
protocol is needed to esti- 
mate the difference 
between local clocks. 

Table 6: Task Involved in Porting the Emulation Platform 

Object references are different between the two platforms because on the KSR-1, the pro- 
grammer assumes a global address space. All objects can thus be referenced through object point- 
ers. However, on the SP-2, all objects have to be explicitly given globally unique names. These 
names are written into the messages exchanged so that the simulator kernels have sufficient infor- 
mation to route them to the correct destinations. Therefore, a naming scheme has to be devised and 
all objects given unique names when the simulation system initializes. Currently, the unique name 
is an integer constructed out of the object class type and the integer index of an object within its 
class type. It is assumed that there are never more than 1024 instances of an object per class. 

Clocks among all processors need to be synchronized because we are running real-time 
simulation. On the KSR-1, this is performed by designating a "master" processor whose local pro- 
cessor clock serves as the common clock. A clock object is created and is "pinned" to run only on 
this processor and it writes continuously onto a known clock variable the value of its local clock. 
When an object needs the common clock time, it simply reads this clock variable. Since reading 
remote memory is on the order of 10ms, if the memory is available in the same ring 0, objects in 
the simulation system can have their clocks synchronized to within 10ms. On the SP-2, the 
approach is to first estimate the clock difference between a "master" processor and all other pro- 
cessors by exchanging many short messages and keeping track of the round trip delay time. Know- 
ing this difference allows each processor to estimate the clock on the master processor by adding 
an offset to its local time. Assuming that the drift of the processor clock is small within the dura- 
tion of the experiment (the experimental time for real-time session is usually not more than an 

hour), the clocks can synchronize to within 100ms or better. 

56 



Prototyping the VPN 
Architecture 

5.1    The Prototyping Approach 

Two main tasks are involved in the development of a network control system: the develop- 
ment of a software system and the design and analysis of control algorithms. The first task focuses 
on the software engineering aspects that satisfy the system requirements. The second concentrates 
on developing control functions that meet performance objectives. So far, these tasks have been 
carried out separately, using different tools and environments. As a result, performance evaluation 
studies concentrate on control algorithms, missing the evaluation of the dynamic behavior and 
complex interactions that take place in the network control system. A thorough evaluation of the 
performance characteristics of a network control system has to take into account both system 
design and control algorithms. This implies that the processes of system development and perfor- 
mance evaluation have to be combined and performed in an integrated way. 

Our approach to developing a network architecture is to build a prototype of the system 
design, i.e., an "easily built, readily modifiable, ultimately extensible, partially specified, working 
model of the primary aspects of the proposed system" [CON95]. The prototype is developed 
incrementally, and it is exercised, validated, and revised after each development step. The proto- 
typing paradigm provides benefits in our application domain: a prototype allows us to evaluate the 
characteristics of the system before the implementation phase on a testbed. Furthermore, by exer- 
cising the system, we become aware of additional, previously unknown or unnoticed system 
requirements. Also, we discover unanticipated side effects of design decisions (which actually 
happens quite often). 

57 



Prototyping the VPN Architecture 

Exercise 
&Revise 

Network Architecture 

Supercomputer 

Maintenance 

I 
Implementation 

Network Testbeds 

Requirement Analysis _; System Design 

Figure 26 Software development process 

System Implementation 

Figure 26 describes the typical phases of a software development process and illustrates 
the methodology followed in this report. Developing software starts with analysis activities, fol- 
lowed by design activities, followed by the implementation and coding phase. The analysis phase 
determines the requirements of the system, while the system design phase produces a model that 
describes how these requirements can be met. This model is independent of the target hardware 
and software environments. During the implementation phase, code is generated to realize the sys- 
tem design with the required functionality and performance characteristics on the target platform. 

We have built a network emulation platform1 which allows us to develop and evaluate pro- 
totypes of network control systems. This platform includes a massively parallel machine which 
emulates an executable model of the architecture and a graphics workstation which visualizes the 
state of the network in real-time and allows us to change control and configuration parameters of 
the emulated system during run time. The emulation platform runs on two types of parallel com- 
puters-the KSR-1 and the IBM SP2. The front end is implemented on an SGI graphics worksta- 
tion. This platform is currently used in several projects in our laboratory which are aimed at 
developing and evaluating network architectures [CHA96a, CHA95a, PAC95]. 

The use of an emulation platform allows us to overcome the many limitations of network 
testbeds. Testbeds have been used to demonstrate the feasibility of providing high-speed connec- 

1.   The emulation platform is not part of the contract deliverable but its design is summarized here because of its influence on the 
VPN architecture design. 

58 



Prototyping the VPN Architecture 

tivity and multimedia communication capabilities among small groups of users [CLA92, FRA92, 
ST092]. Unfortunately, the results produced on such a testbed are generally restricted to a spe- 
cific system configuration and cannot be used to predict the behavior of the system when the num- 
ber of users, services, and network nodes is increased. Furthermore, it is hard to perform 
experiments on network testbeds because of the intrinsic difficulty in instrumenting and monitor- 
ing a distributed system. Finally, it is hard to quickly modify a system on a testbed, since there is 
generally no homogenous development environment available. 

Compared to a network testbed, tasks on a parallel machine can be easily monitored and 
controlled, components can be easily added or modified, and the system size can be increased, 
limited primarily by the processing resources of the parallel machine. 

Our platform meets important requirements for building prototypes. First, it gives us a 
homogenous programming environment with base object classes to build network controllers and 
with support for communication among controllers. Second, it provides us with flexibility for test- 
ing purposes. Traffic generators, for example, allow us to study the system under different load 
patterns. Aspects of system configuration, including the network topology, are defined in files that 
can be changed from run to run. Third, our platform supports interactive control of the prototype 
during run time and dynamic visualization of the system in real-time. We can run what-if scenar- 
ios and we can observe dynamic phenomena such as oscillation of the network state or transient 
behavior. Fourth, network control systems need a large amount of computational resources to run 
in real-time when the system size increases. The multiprocessor we are currently using gives us 
the capability to allocate a sufficient number of processors (technically, up to 512) to perform 
scalability experiments. 

Finally, in order to carry out performance evaluations, we need to control the execution 
time of the prototype system. The classical way to achieve this is to run the prototype as a (paral- 
lel) discrete event simulation, which allows us to model delays. Following this approach, we built 
a parallel simulation kernel as part of the emulation platform. To facilitate the construction of pro- 
totypes, we designed the platform in such a way that the simulation is transparent to the developer 
of a network architecture. This means that a user of our platform needs little simulation knowl- 
edge (see Section 5.4). 

NEST [DUP90] is another platform developed for prototyping networks. It provides an 
integrated environment that supports system development and simulation. This environment 
allows developers to use the same set of tools, such as compilers or editors, for system develop- 

59 



Prototyping the VPN Architecture 

ment and simulation, and to re-use some code segments. However, this platform is built around a 
single processor simulation server which does not provide the necessary performance we require 
for our evaluation studies. (For a survey on network simulation tools, see [COM94].) 

5.2    Design of the Emulation Platform 

The emulation platform consists of four building blocks: parallel simulation kernel, emu- 

lation support, real-time visualization and interactive control, and emulated system (Figure 2 7). 
The emulated system and emulation support modules consist of a set of objects that communicate 
by exchanging messages, using functions provided by the simulation kernel. The emulated system 
module represents the prototype of the network control system under evaluation. 

Real-Time 
Visualization 

and 
Interactive 

Control 

Emulation 
Support 

Emulated System 

Parallel Simulation Kernel 

Figure 27   Building blocks of the interactive emulation platform. 

The simulation kernel controls the execution of these objects and ensures that messages are 
processed in the correct order. It implements the paradigm of parallel discrete event simulation 
(PDES) [FUJ90], using a variation of the window-based synchronization protocol described in 
[NIC93]. In order to support real-time visualization and interactive control of the emulated sys- 
tem, the kernel controls the progression of the simulation time, constraining it by the progression 

of the processor time. The design of this kernel is discussed in [CHA96b]. 

Objects that interact with the parallel simulation kernel require minimal knowledge about 
the kernel-mainly how to send and receive messages. Therefore, the design of the emulated sys- 
tem follows the same rules as the design of network controllers that run on a real network plat- 
form. The major difference is in how the interaction among controllers is realized. In the emulated 
system, interaction is performed by the simulation kernel. In a broadband network environment, 
for example, the exchange of messages is provided by a signalling system. 

60 



Prototyping the VPN Architecture 

The module for real-time visualization and interactive control contains a graphical inter- 
face which provides 3-D visual abstractions of the system state. The state of the emulated system 
is continuously refreshed, which allows a user to follow the system dynamics on the interface. 
The user is able to control the behavior of the emulated system by changing parameters through 
the interface. 

The emulation support module coordinates the exchange of control and monitoring mes- 
sages between the graphical interface and the emulated system. It reads the states of the emulated 
system, and performs filtering and abstraction operations before making the information available 
for visualization. Control information from the user is mapped to a set of control parameters that 
are interpreted by the emulated system. 

The design of the emulation platform along the four building blocks described above 
serves the purpose of portability and re-usability. The platform runs on two types of supercomput- 
ers-one with a shared memory architecture and the other having a distributed memory architec- 
ture. The two implementations differ in emulation support and types of simulation kernel 
modules. The emulated system module needs only minor changes when porting the software from 
one computer to the other; the module for real-time visualization and interactive control needs no 
modification. 

61 



Prototyping the VPN Architecture 

5.3    The Parallel Simulation Kernel 

The simulation kernel controls the execution of simulation objects and routes events from 
one object to another. Objects that require services from the kernel are defined as a subclass of 
SimObj ect. Each SimObj ect (or any subclass of this object) has a processEvent method 
with an input parameter of type Event. Attributes of an Event include a time-stamp indicating 
when the event can be processed, object identifiers of source and destination, and an event-type 

tag. An object generates an event by invoking the sendEvent method which has an output 
parameter of type Event. The simulation kernel receives this event, routes it to the destination, 

and invokes the recvEvent method of the destination object. 

Figure 28 shows the realization of the parallel simulation kernel. It is implemented as a set 
of local simulation kernels, each running on a separate processor. A local simulation kernel con- 
trols the execution of objects allocated to its processor. Routing of events is performed using a 
copy of a global object allocation table which is set up during the initialization phase of the simu- 

lation. 

K ratio _x 
^SimObject  ) 

Event 
Queue 

Thread of Control 

Local Simulation Kernel 

111 
TG       TS TW 

t 

SimObject   ) 

Messages' 
Local Simulation Kernel | 

Message Passing Layer 

Parallel Simulation Kernel 

Figure 28 Realization of the Parallel Simulation Kernel. 

'w 

i 

Event 
Queue 

Thread of Control 

The simulation kernel controls object execution using a global time TG. It delivers an event 

to an object for execution only when the time-stamp of the event is smaller or equal to TG. Other- 

wise, the event is buffered in the event queue. 

62 



Prototyping the VPN Architecture 

TG is computed as the minimum of Ts and Tw, which are explained below. Ts is the simu- 

lation time as computed by the causality-control protocol, which is based on the window-based 
synchronization protocol described in [NIC93]. 

Tw, the scaled wall-clock time, is a linear function of the processor time taken from a ref- 

erence processor, i.e., Tw = Ptime • Kratio , where Ptime denotes the processor time and Kratio is a 

control parameter that can be changed by the user. 

Performing the simulation in the above described way allows us to synchronize the evolu- 
tion of the simulation time with a linear function of the processor time. Our system is therefore 
capable of reproducing and visualizing the dynamics of the real system, with the time scaled by a 
factor. By changing Kratio, we can control the speed at which the simulated system state evolves. 

For example, we can slow down or "speed up" the simulation. (Speeding up the simulation is 
obviously constrained by the performance characteristics of the hardware.) 

By processing an event only when its time-stamp is smaller than Ts ~ i.e., when no causal- 

ity violation can occur - we follow the conservative approach to parallel simulation. We eschew 
the optimistic approach, which requires roll-back and state saving mechanisms, mainly because 
that approach makes it difficult to build simulation objects independent of the simulation kernel 
[NIC95]. Our objective is to have a clean separation between the emulated system and the simula- 
tion kernel, rather than improving the performance of the simulation kernel. (It is argued that, in 
general, optimistic simulation allows for better performance of a parallel simulation kernel 
[FUJ90], although our application falls into a class where conservative simulation exhibits a com- 
parable speedup [NIC95].) 

63 



Prototyping the VPN Architecture 

On a function level, the task performed by a simulation kernel can be described by a loop 
consisting of three steps. In step 1, the set of local simulation kernels runs a synchronization proto- 
col to compute TG. In step 2, each logical process is allowed to process all events with time-stamp 

not later than TG. In step 3, when all events have been processed, the set of local simulation ker- 

nels has to make sure that all events sent previously have been received before they proceed back 
to step 1. Synchronization in step 1 and 3 are performed using MPI primitives on the SP-2. In step 
1, a call to MPI_Allreduce() is used to find the minimum time-stamp of messages received by all 

logical processes. In step 3, there is one call to MPI_Barrier() and then one call MPI_Allreduce() 
to check that all messages sent are received. The overhead introduced by these synchronization 
operations are measured for 4 processes, each running on a different processor, calling 
MP_Allreduce() or MPI_Barrier() in a tight loop. The result shows that MPI_Allreduce() takes on 
the average 0.2ms to execute, while MPIJBarrier takes 0.1ms to execute. 

Find TG 

Process 

I 
Synchronize 

(Stepl) 

(Step 2) 

(Step 3) 

Benchmark of some primitives (4 CPUs) 

In (STEP 1) 0.2 ms 

In (STEP 3) 0.3 ms 

Figure 29 Performance of Simulation Kernel 

64 



Prototyping the VPN Architecture 

The performance of a 50 node experiment running on the simulation kernel is shown in 
Figure 30. In this measurement, we ran the traffic control system, which includes traffic genera- 
tors, connection managers, routers, and admission controllers. There are more than 250 objects in 
the simulated system. The number of processors used in the simulation is increased from 2 to 48, 
and the number of events processed per second by the simulator is recorded. The figure shows a 
reasonable increases in performance when the number of processors increases, though as 

expected, the increase in far from linear. 

An interesting question one can ask is how many processors are needed such that the sim- 
ulation can run in real-time. In other words, how many processors are needed such that the simu- 
lator can process events fast enough so that Kratio = 1 (Ptime = Tw), and TG = Tw = Ts. As an 

approximation, we assume that events are proccessed at a uniform rate. Thus, the event process- 
ing rate required for real-time simulation is taken to be the ratio of the total number of events pro- 
cessed and the total simulation time. In Figure 30, the horizontal line drawn across the figure 
indicates the average event processing rate required for real-time simulation. The interaction 
between this line and the speedup curve gives the number of processors needed. For this particular 

system configuration, about 26 processors are needed. 

CD 

E 
3 

O o o o 

o o o 

o o o 
to 

o o o 

o o o 
CM 

10 20 30 

Number of Processors 

Figure 30 Scalability of a 50 node experiment running on the simulation kernel 

65 



Prototyping the VPN Architecture 

5.4    Emulation Objects 

Emulation objects, i.e., objects in the emulated system, are instances of subclasses of 
SimObject. The purpose of the base class SimObject is to hide the simulation functionality from 
the user by enforcing a clean separation between SimObject and the emulation objects. 

Simulation Object (SimObject) 

Simulation Time 

sendEvent(Event) 
processEvent(Event) 

recvEvent(Event) 
execEvent(Time) 

Emulation Object 

getProces singTime(E vent) 

Figure 31   Inheritance relationship between simulation and emulation object classes. 

Figure 31 and Figure 32 follow the notation of [RUM91]. Each object is described by its 
name (e.g., Simulation Object), followed by attributes (e.g., Simulation Time), and finally the 
methods associated with the object (e.g. sendEvent and processEvent). As shown in Figure 31, 
SimObject has two groups of methods. Group (A) consists of methods that are relevant to the 
emulation objects. The interface sendEventQ is a generic function used by all emulation objects to 
initiate the sending of messages. The interface processEventQ is used for interpreting messages 
that have been received, so that the appropriate methods in the emulation object are invoked. (This 
function is similar to the stub code function for RPC systems.) This interface is different for each 
class of emulation objects. The interface getProcessingTimeQ returns the time needed to process a 
particular event, drawn from a probability distribution that models the processing time. This inter- 

66 



Prototyping the VPN Architecture 

face is also different for each class of emulation objects. Group (B) consists of methods necessary 
to support a conservative approach to parallel simulation. These methods are common to all emu- 
lation objects. They are visible only to the simulation kernel and are not accessed by emulation 

objects. 

In order to add a new emulation class to the emulated system, the user needs to specify the 
implementation of two methods, processEvent() and getProcessingTime(). The rest of the meth- 
ods are inherited directly from SimObject. Therefore, the overhead of using our platform over a 
general purpose computing platform is that two additional methods need to be provided. Since in 
order to run an object in a message passing environment, a method equivalent to processEventQ is 
required anyway, the additional interface needed when writing an emulation object which runs on 

our platform is the method getProcessingTimeQ. 

Our design is based on the conservation approach to parallel simulation. This enables a 
clean separation between simulation and emulation model, because the designer of an emulation 
object needs minimal knowledge about the underlying simulation model. If an optimistic 
approach is adopted, the methods (B), which implement a conservative simulation protocol, must 
be replaced by a set of methods that implement an optimistic protocol. (The methods (A) remain.) 
In this case, however, the designer of an emulation object has to deal with state-saving that is 
needed if roll-back occurs. The designer has to specify, for each class of objects, the states to be 
saved. This is a non-trivial task, which requires knowledge of the simulation model in order to 
obtain good simulation performance. In this sense, the conservative approach provides an easier- 
to-use simulation environment, compared to the optimistic approach [NIC95]. 

A fundamental abstraction in the domain of network control and management is the con- 
cept of a resource. We model a resource as an object characterized by the attributes capacity 
and operating point, which indicates the utilization of the capacity. The capacity of a 
resource defines an upper bound for the operating point. Resources are modeled as finite capacity 
queues without buffers. A resource controller regulates access to a resource. It receives requests 
for access to the resource and decides whether to accept or reject the request, based on the capac- 
ity, the current operating point, and the control policy. We model resource controllers as emula- 
tion objects with methods that allow for resource negotiation and generic monitoring (see Figure 

32). 

67 



Prototyping the VPN Architecture 

Emulation Object 

Resource Controller 

Resource Resource Access Counter 

operating point S(t), request successful 
B(t), request fail 
D(t), release successful 
sample window size 

requestResource(ID, resource) 
releaseResource(ID) 

getStat(counters) 

Figure 32 Generic monitoring and access of a resource controller. 

A monitoring operation on a resource controller object returns the following event 
counters: 

- S(t) the number of successful requests at time t. 

- B(t) the number of unsuccessful requests at time t. 

- D(t) the number of departures at time t. 

Statistics relating to a resource controller are derived from these counters. For example, 
N(t), the number of active requests at time t is given by S(t) - D(t), and the average blocking 
between the time interval tj and t2 is (B(t2) - B^))/ (t2 - tj). The window size of the samples kept 

in memory determines how sensitive the statistics are to short-term variations. 

68 



Prototyping the VPN Architecture 

Emulated Objects communicate via asynchronous message passing. For example, in one 
of our network prototypes, messages are exchanged among connection managers and link admis- 
sion controllers during a connection setup. Logically, a mailbox is associated with each emulation 
object. If object A wants to send a message to object B, it invokes a send function that inserts the 
message into B's mail-box. Conversely, object B receives messages from other objects by invok- 
ing a receive function that removes the messages from its mailbox. 

Our platform supports asynchronous message passing, because it is a flexible communica- 
tion paradigm. It can be used to emulate other paradigms, including synchronous message pass- 
ing, generative communication, and remote procedure call (RPC) [AND91]. Furthermore, the 
Signalling System No. 7 [ADB90], which is a part of the telecommunications networks' control 
systems, also uses message passing as the communication paradigm. 

5.5    Emulation Support 

Figure 33 shows a data-flow diagram of the software architecture for the support of real- 
time visualization and interactive control. Its design follows the monitoring-control paradigm. 
Monitoring is realized as a continuous activity, whereby a stream of data produced by the network 
emulator is consumed by the operator interface in the graphics workstation. Interactions among 
components involved in the monitoring process are asynchronous, via reading and writing shared 
objects, which allows them to run on different time scales. Control operations, on the other hand, 
are event-driven and are based on the client-server paradigm. 

69 



Prototyping the VPN Architecture 

Real-Time 
Visualization 

and 
Interactive 

Control 

Emulated 
System 

Emulation Support 

User Control  Abstracted 
Knowledge Base        state 

Network 
Control 

Emulation _ 
Monitoring 
Parameters 

Control 
Parameter 

i k 

Abstraction 
Mechanism 

i k 

Abstraction 

s: 

zz. ~Z1 

Emulation 
Control 

Parameters 

Network 
State 

Emulation 
Control 
    

Emulation 
"►Monitoring 

Parameters 

Abstraction 
Mechanism 

Control 
Parameter Abstraction 

^ 

NETWORK 

Figure 33 Software architecture for the Emulation Support module. 

There are two types of control operations: (1) emulation control operations, which alter the 
behavior of the emulated system and are executed by the network emulator, and (2) monitoring 
control operations, which affect the monitoring activity. Emulation control operations include 
changing the input load on the system and modifying the control policies with which the control 
mechanisms run. Monitoring control operations tune components in both the emulation system 
and the manager station. They regulate the part of the network state that can be visualized on the 
manager station, as well as the amount and the granularity of data that is carried over the network, 
by, for example, adjusting the sampling interval and the size of the monitoring window. Inside the 
manager station, the information collected from the various network objects can be abstracted, 
correlated and displayed on the screen in different ways. By varying the quantity and granularity 
of information collected and sent over the network, our system can be tailored to different comput- 

ing and network platforms. 

70 



Prototyping the VPN Architecture 

5.6    Real-Time Visualization and Interaction 

The design of the Real-Time Visualization and Interactive Control module focuses on the 
selection capabilities, high-level control primitives available to the operator, and visual represen- 
tation of network states. These modules allow an operator to try what-if scenarios, invoke specific 
network services during run-time, emulate network management operations, and visualize the 
effect of these operations. 

Operations performed by the human operator through the interface are categorized into 
three groups. The first set relates to defining the input traffic characteristics for each network 
node. The second set enables a variety of monitoring functions. By selecting objects (switches, 
links, network regions, etc.) on the network map, together with the desired monitoring option, the 
operator can visualize, in real-time, various abstractions of the network state, including traffic 
intensities and network utilization. The third set of interface operations refers to changing man- 
agement parameters, which allow operators to tune the behavior of mechanisms in the traffic con- 
trol system. 

This remaining part of this section gives an overview of the structure and the composition 
of the network management system consisting of a graphical user interface which allows interac- 
tive control of real-time services. 

5.6.1   Processes and Tasks 

The network emulation and visualization is done by different processes that run on differ- 
ent machines. The emulation and simulation of the network is computed on a parallel computer, 
while the visualization of the network state is done on an SGI workstation. The main process on 
the workstation is Net3D. Net3D starts the sender and receiver process, builds the user interface 
including the three-dimensional graphics and handles the user input. 

71 



Prototyping the VPN Architecture 

Net3D Net3D (Net3D) 

Initial state 

( kcomm) 

Intermediate state Final State 

Figure 34 Generation of the processes in two steps 

Figure 34 shows the phases of the initialization process. Net3D forks a child process 
kcomm which deals with the communication tasks, kcomm will be divided further into two pro- 
cesses, one for sending and the other for receiving data to and from the network emulator. 

Communication between the kcomm processes (sender and receiver) and the emulator is 
performed using TCP/IP sockets. Figure 35 gives an overview. The sender/receiver processes and 
Net3D communicate over shared memory segments. There are three different segments corre- 
sponding to the different tasks the processes have. The statistics data describing the current traffic 
load, number of calls etc. are written by the receiver process into the shared memory segment for 
monitoring. Net3D reads from the shared memory and updates the graphics. Receiver and Net3D 
operate asynchronously using independent control cycles. The result is that the receiver can update 
the data more (or less) frequently than Net3D reads the data. When the control parameters are 
changed by the user, the new values and corresponding function tags are sent to the emulator by 
the sender process. The sender reads the values and the tag from the shared memory segment for 
control. Depending on the operation, the sender may write the values to a third shared memory 
segment, the parameter segment. If later the values of the parameters are needed to show the cur- 
rent state, Net3D can read the values from the segment and does not have to get the values from 
the emulator. So the parameter segment serves as a storage for the parameter values. The control 
parameter, for example, allows the user to change the values for the call arrival and departure rate 

and shows the current values. 

72 



Prototyping the VPN Architecture 

• data send 
: over network 

Emulation Support 

shared memory segment    _ 

Real-Time Visualization 
and Interactive Control 

socket data flow 

Figure 35 Processes and communication means 

5.6.2 Modules and Classes 

The system can be divided into two subsystems which correspond to the communication 
functionality on the one hand and the visualization functionality on the other. The visualization 
functionality consists of a part that builds up the menu and handles the user events and a second 
part that visualizes the network and the related statistics. The visualization subsystem is imple- 
mented in C++ resulting in a modular, abstract class system. The modules dealing with sockets 
and shared memory are written in C and rely on global shared variables, which leads to a system 
that is not as modular and abstract as the graphics subsystem. However, the advantage resulting 
from this approach is a high performance which is fundamental for real-time visualization. The 
module smmgr.c containing the functionality for the shared memory management and is used by 
both subsystems. 

5.6.3 Sender and Receiver 

73 



Prototyping the VPN Architecture 

The sender and the receiver are both implemented in comm.c. The functions sendfunc() 
and recvfuncO correspond to the sender and receiver respectively. After initializing the shared 
memory segments and the connections, the sender and receiver both go into a loop. The sender 
waits for requests to send to the emulator. The receiver waits for incoming data from the emulator. 
The exchange of data between the sender and Net3D is controlled by a handshaking mechanism 
using a control variable placed in the shared memory segment. After a write operation the Net3D 
process writes 1 to the control variable. The sender periodically tests whether the control variable 

has changed to 1. If it has, the sender reads the data and sets the control variable to 0. Net3D can 
only write again, after the control variable has been set to 0. This results in the two following func- 

tion pairs: 

int write_lock_shared_memory_segment(shared_cntl_t* addr) 

{ 
while (addr->write == 1) { sginap(lO); } 
return 1; 

} 

int write__unlock_shared_memory_segment(shared_cntl_t* addr) 

{ 
addr->write = 1; 
return 1; 

} 

int read_lock_shared_memory_segment(shared_cntl_t* addr) 

{ 
while (addr->write == 0) { sginap(lO); } 
return 1; 

} 

int read_unlock_shared_memory_segment(shared_cntl_t* addr) 

{ 
addr->write = 0; 
return 1; 

} 

sginapO is a IRIX specific system call and is the equivalent of the sleep() function avail- 
able on most UNIX platforms. The argument to sginapO is specified in units of 10ms. Therefore, 
the call signap(lO) will cause the process to sleep for 100ms. The data structure shared_cntl_t is 

described in more detail in section 5.6.4 

5.6.4   Net3D 

74 



Prototyping the VPN Architecture 

The shared memory management for Net3D is done in smmgr.c and in the class Statistics- 
Manager. As mentioned above, three different shared memory segments are involved to change 
the management parameters of the simulated network. Net3D writes the corresponding tag and 
the required parameter values into the control shared memory segment. The results are then writ- 
ten to the parameter shared memory segment. The third shared memory segment contains the cur- 
rent statistics data updated by the receiver process and is read by the statistics objects. The 
corresponding data structure is shown in Figure 36. Bold names are type names, italic names are 
identifications of shared memory segments, and arrows represent pointers. The segment for moni- 
toring (shmonid) is used as an array of blocks. Each of these blocks (of type shared_measure_t) 
belongs to a link and contains the values of the related parameters, as capacity, current load, etc. 
The global variable shared_mon_addr is used by the statistics objects to fetch the data. Each sta- 
tistics object has an index that determines the pointer to the appropriate block in the segment. The 
assignment of the blocks (indices) to the links is done in the statistics manager, an object of type 
StatisticsManager. 

shared_cntl addr 

shared_cntl_t 

shctlid        shparaid shared_cntl_para_addr 

shared_cntl_para_t 

shmonid 

tfl 

shared_mon_addr 

shared_measure t I 

0    1    2 255 

Figure 36 Shared memory data structure in Net3D 

75 



Prototyping the VPN Architecture 

5.6.5  Network 

The visualization part encompasses two different tasks. The first task is the visualization of 

the network consisting of links and nodes which can be composed to net regions. There are two 
layers visualized, one showing the virtual paths (VP) and nodes, the other showing the virtual path 
groups (VPG) and nodes. The data structure used to model the network is shown in Figure 37 and 
Figure 38. An object of the class from which the arrow starts has an object that belongs to the class 

at which the arrow points. A circle at the point of the arrow means that several objects are 
attached. The class NetAppWindow is the container class in the sense that an object of this class 
builds the whole datastructure needed to model the network and to provide the user interface. 

fc NetNode ^ 

fc- 
™ NetLink | 

Network 
NetLogicalNode ^ • 

NetLogicalLink 

NetRegion 

SoSeparator 

SoSelection 

NetNode 

NetLink 

nodekit 

SoSeparator 

denotes has a relationship 

Figure 37 Data structure modeling the network (I) 

SoText2 

SoNode 

Network 

l NetNode 

> NetLogicalLink 

• linkkit 

- SoSeparator 

SoNode 

76 



Prototyping the VPN Architecture 

^ 

Network 

lonodekit 

SoSeparator 

SoText2 

SoNode 

NetRegion 

— 

NetNode 

NetLink 

SoSeparator 

SoSelection 

SoMaterial 

SoLineSet 

denotes has a relationship 

NetLogicalLink 

NetApp Window 

Network 

NetLogicalNode 

NetLink 

lolinkkit 

SoSeparator 

SoNode 

Network 

Menu 

Widget 

SoSeparator 

SoXtExaminer Viewer 

SoPerspectiveCamera 

SbViewportRegion 

Figure 38 Data structure modeling the network (II) 

The graphical objects are written using the Openlnventor shape kits. These are higher 
level abstractions for assemblies of elementary objects as lines, cubes, transformations, colors etc. 
Four different shape kits are used for visualizing the network, namely, nodekit (VPG -node), lon- 
odekit (VP-node), linkkit (VPG-link) and lolinkkit (VP-link). The inheritance relation with the 
base class SoBaseKit is shown in Figure 39. 

77 



Prototyping the VPN Architecture 

SoBaseKit 

nodekit lonodekit linkkit 

1 

lolinkkit 

Figure 39   Inheritance relation of shape kits 

The related files are NodeKit.[hC], LogicalNodeKit.[hC\, LinkKit.[hC] and LogicalLinkKit.[hC]. 

5.6.6  Statistics 

The second task is the graphical representation of the network state. There are various 
classes dealing with statistics. The inheritance graph is shown in Figure 40. The class Stat is an 
abstract base class (and therefore in italic). The numerical values are visualized by three-dimen- 
sional cylindrical bars or as curves and points in a 3D coordinate system. 

Stat 

SchedulableRegion VPGStat VectStat NetStat PriorityStat VectHi story 

Figure 40 Inheritance relation of statistics classes 

Statistics objects are allocated by the class Interface when the user clicks on the corre- 
sponding buttons. Figure 41 shows the allocation relations. Arrows represent allocation, i.e. an 
object of the type which the arrow points to is allocated by an object of the type which the arrow 
starts from. A circle at the point of an arrow means that several objects are allocated. 

78 



Prototyping the VPN Architecture 

Interface 

LinkStat2 

VPGStatConfig 

StatHistory 

X SchedulableRegion 

LinkS tat 1 —^« NetStat 

PriorityStat 

++ VectStat 

VPGStat 

VectHistory 

allocates class 

Figure 41 Object allocation 

NetStat, PriorityStat and VPGStat are visualized by cylinders placed on the lines that rep- 
resent the links. VectStat objects are visualized as floating points in a coordinate system. A Sched- 
ulableRegion object is shown in the same way, with an additional plane that indicates the range. A 
VectHistory object is visualized as a curve in a 3D coordinate system. The statistics are updated at 
clock ticks generated by a timer (an Openlnventor object). All the statistics objects are contained 
in a global array that is managed by the statistics manager. This is shown in Figure 42. By this 
method, the objects can be updated by traversing the array and calling the update function on each 
object. The current values that are to be visualized can be found in the shared memory segment 
for monitoring. Each statistics object has an index which determines the corresponding block in 
the shared memory segment (see Figure 42 too). 

79 



Prototyping the VPN Architecture 

Stat 0      1      2 
stats    ► 

255 

1 

shmonid 

NetStat NetStat VectStat VectHistory VPGStat 

id\ ' V     i r i 

Figure 42 Data structure used to update the bars and diagrams 

According to the numerical values the different statistics objects redraw themselves. 

5.6.7  User interface and interactive control 

The user interface contains beside the mentioned statistics functions management simula- 
tion control functions. The emulation control function allows the user to vary the parameters deter- 
mining call arrival rate and holding time. The simulation control allows the user to change the 
simulation speed and to monitor the advance of the real clock and simulation time. The network 
management function encompasses the definition of the adaptivity of the system, the definition of 
quality of service constraints and the capacity allocation. Other features included are mapping of 
the relation between the virtual paths and the virtual path groups and changing of the refresh rate 
for graphics updates. 

80 



Prototyping the VPN Architecture 

5.6.8   NoOps 

Several functions appear in the user interface, but are not yet implemented. Among these 
are the robustness control and several functions listed in the pull down menu. 

81/82 



Discussion and Summary 

6.1    Summary of Work Performed 

In this project, we have developed an architectural framework for constructing a virtual 
private network (VPN) service that enables the transparent interconnection of a private backbone 
with isolated component networks. The major characteristics of this architecture are: 

• The VPN service is based on the concept of Virtual Path Groups and provides a high 
degree of customer control. As a result, the interaction between customer and provider is 
minimized. 

• The control architecture is structured into three layers of control, according to different 
time-scales. 

• Each control layer is modeled by a generic controller design concept we developed that 
allows us to implement a large class of control objectives and control schemes. 

• A set of performance management capabilities has been realized for this service, including 
QOS management, VP management and priority management. 

• A concept for end-to-end Quality of Service (QOS) in the customer network over a pro- 
vider network that provides Constant Bit-Rate (CBR) virtual path (VP) has been devel- 
oped. 

The verification and validation of the network architecture is performed on a high-perfor- 
mance emulation platform, specifically, an IBM SP-2 located at Cornell Theory Center. Our 
approach for validation is based on real-time network emulation, which includes executing the 
behavior of network components and their inter actions on a high-performance machine. The 
emulation environment allows us to experiment with the functionality and dynamics of virtual 
networks (and the underlying transport networks), with greater flexibility and lower cost than 
implementing components on a real testbed. The emulation system can be controlled by and visu- 

83 



Discussion and Summary 

alized on an Indigo2 workstation at Columbia connected to the supercomputer over high-speed 
NYNET links. 

6.2 Related Accomplishments 

A number of publications were the results of the work performed. These publications are 
listed below: 

[1].      Mun Choon Chan, Hisaya Hadama and Rolf Stadler, "An Architecture for Broadband Vir- 
tual Networks under Customer Control," IEEE Network Operations and Management 
Symposium, (Kyoto, Japan), April 1996. 

[2].      Mun Choon Chan, Giovanni Pacifici and Rolf Stadler, "A Platform for Real-Time Visual- 
ization and Interactive Simulation of Large Multimedia Networks," 4th Int'l Workshop on 
Parallel and Distributed Real-Time Systems (WPDRTS), April 15-16, 1996, Honolulu, 
Hawaii. 

[3].      Mun Choon Chan, Giovanni Pacifici and Rolf Stadler, "Prototyping Network Architectures 
on a Supercomputer," Fifth International Symposium on High Performance Distributed 
Computing (HPDC-5), (Syracuse, NY), August 1996. 

[4]. Mun Choon Chan, Aurel A. Lazar and Rolf Stadler, "Customer Management and Control 
of Broadband Virtual Networks," IFIP/IEEE International Symposium on Integrated Net- 
work Management (IM '97), (San Diego, California), May 1997. 

A working prototype of the emulated system was shown in the demonstration program of 
the Fifth International Symposium on High Performance Distributed Computing (HPDC-5), 
which was held in Syracuse, NY, from August 5 to August 9, 1996. 

6.3 Future Work and Discussions 

We are currently working on a public domain release of the parallel simulation kernel used 
in the emulation platform. This version of the parallel simulator is totally independent of the vir- 
tual network architecture and can be used as a general purpose parallel simulator. As the simulator 
is based on MPI, it is very portable and can run on at least 4 popular UNIX platforms, namely: Sun 
Solaris, SGI IRIX, HP-UX and IBM AIX. In addition to the features described in Chapter 5, it 
includes useful features like run-time creation of new object instants and simulation events. The 
simulation kernel can also be externally controlled such that the simulation can be halted and 
restarted anytime. 

84 



Discussion and Summary 

From our experience, we found the idea of prototyping very useful. We have explored this 
idea in the case of the virtual private network architecture where the control architecture is first 
prototyped on the emulation platform follow by moving the prototype to the target platform 
(xbind [LAZ96, CHA96d]). Initial experience is encouraging. 

In order for a VPG-based VPN to be realized as a viable commerical service, an important 
requirement is that policing of customer traffic, which is performed per VPG, is done not only at 
the gateway between the CPN and the VPN, but is also done at the transit switches within the pro- 
vider domain. Since VPG is a logical concept that might not be recognized by all the switches, 
additional work is needed. One possibility is to assign a group of VPI's to a single VPG group. 
For example, all the VPs in the same VPG group can have the same most significant 9 bits in the 
VPI field and only the last 3 bits in the VPI header can vary (which will allow 8 VPs per VPG). 
Policing is performed per VPG by masking the last three bits of the VPI header. VP switching 
remains the same. Such a scheme could conceivably be implemented on existing ATM switches 
with only minor modifications. A related problem is the requirement that all public network pro- 
viders agree on the same masking scheme when the VPN covers more than one public network. 

85/86 



References 

[ABD90] R. Abdi, R.A. Skoog, "Signalling System No. 7: A tutorial," IEEE Communications 
Vol. 28, No, 7, July 1990, pp. 19-35. 

[AND91] G.R. Andrews, "Paradigms for process interaction in distributed programs," ACM 
Computing Surveys, Vol. 23, No. 1, March 1991, pp. 49-90. 

[AND94] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum, 
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users' 
Guide, Second Edition, SIAM, Philadelphia, PA, 1994. 

[ANE96a] Aneroussis, N. G. and Lazar, A.A., "Virtual Path Control for ATM Networks with 
Call-Level Quality of Service Guarantees", Proceedings of the IEEE INFOCOM' 96, 
San Francisco, CA, March 1996. 

[ATS93]       T. Aoyama, I. Tokizawa, K. Sato, "ATM VP-Based Broadband Networks for 
Multimedia Services," IEEE Communications Magazine, April 1993, pp. 30-39. 

[BLA90]      D. Black, "Scheduling Support for Concurrency and Parallelism in the Mach 
Operating Systems," IEEE Computer, Vol. 23, No. 5, pp. 35-43, May 1990. 

[BLA95]      T.D. Blachard, T.W. Lake, "Distributed Simulation with Locality," in Proceedings of 
the 9th Workshop on Parallel and Distributed Simulation, pp. 195-198, Junel995 

[BOL91]      R. Bolla, F. Davoli, "A Two-Layer Optimization Structure for Access Control and 
Bandwidth  Sharing  in  High-Speed  Integrated  Networks,"  Telecommunication 
Services for Developing Economies, pp. 317-328. 

[BOY93] J. Boykin, D. Kirschen, A. Langerman, S. LoVerso, Programming under Mach 
Addison Wesley, 1993. 

[CHA93] Arthur Chai and Sumit Ghosh, "Modeling and distributed simulation of a broadband- 
ISDN network," IEEE Computer, vol. 26, pp. 37-52, September 1993. 

[CHA96a] M.C. Chan, H. Hadama and R. Stadler, "An Architecture for Broadband Virtual 
Networks under Customer Control," IEEE Network Operations and Management 
Symposium, (Kyoto, Japan), April 1996. 

[CHA96b] M.C. Chan, G. Pacifici and R. Stadler, "Prototyping Network Architectures on a 
Supercomputer," Fifth International Symposium on High Performance Distributed 
Computing (HPDC-5), (Syracuse, NY), August 1996. 

[CHA96c] M. C.Chan, G. Pacifici and R. Stadler, "A Platform for Real-Time Visualization and 
Interactive Simulation of Large Multimedia Networks," 4th Int'l Workshop on 
Parallel and Distributed Real-Time Systems (WPDRTS), April 15-16, 1996, 
Honolulu, Hawaii. 

87 



[CHA96d]    Mun Choon Chan, Jean-Francois Huard, Aurel A. Lazar and Koon-Seng Lim,   On 
Realizing   a  Broadband  Kernel  for  Multimedia Networks,"  Third  COS I   151 
International  Workshop  on  Multimedia Telecommunications  and  Applications, 

Barcelona, 25-27 November, 1996. 

[CHA97]      Mun Choon Chan, Aurel A. Lazar and Rolf Stadler, " Customer Management and 
Control of Broadband," IFIP/IEEE International Symposium on Integrated Network 
Management (IM '97), (San Diego, California), May 1997. 

[CLA921      D D Clark, B.S. Davie, DJ. Färber, I.S. Gopal, B.K. Kadaba, W.D. Sincoskie, D.L. 
Smith, and D.L. Tennenhouse, 'An overview of the AURORA gigabit testbed,' 
Proceedings of the INFOCOM 1992, (Florence, Italy), May 1992. 

[COM94]     Special issue on Network level modeling and simulation, IEEE Communications, Vol. 

32, No.3, March 1994. 
[CON95]     J.L. Connell, L.I. Shafer, Object-oriented rapid prototyping, Prentice Hall, 1995. 

rDUP901      A Dupuy, J. Schwartz and Y. Yemini, "NEST, A network simulation and prototyping 
testbed," Communications of the ACM, Vol. 33, No. 10, pp. 63-74, October 1990. 

rDZI961       Z Dziong Y Xiong, L.M. Mason, "Virtual Network Concept and Its Applications for 
Resource Management in ATM Based Networks, "Broadband '96, Montreal, Canada, 

April 1996. 
rELW931      AI Elwalid, D. Mitra, "Effective Bandwidth of General Markovian Traffic Sources 

and Admission Control of High Speed Networks," IEEE/ACM Transactions on 
Networking, Vol. 1, No. 3, pp. 329-343. 

[FOT95]       S. Fotedar, M. Gerla, P. Crocetti, and L. Fratta, "ATM Virtual Private Networks- 
Communications of the ACM, vol. 38, no. 2, Feb. 1995. 

[FRA92]      AG   Fräser, C.R. Kalmanek, A.E. Kaplan, W.T. Marshall, and R.C. Restrick, 
"XUNET 2: A nationwide testbed in high-speed networking," Proceedings of the 
INFOCOM 1992, (Florence, Italy), May 1992. 

[FRA93]      S. Frank, H. Burkhardt III, J. Rothnie, "The KSR1: Bridging the gap between shared 
memory and MPPs," Compcon '93 Proceedings, pp. 285-294. 

[FUJ90]       R. Fujimoto, "Parallel discrete event simulation," Communications of the ACM, 
October 1990, Vol. 33, No. 10, pp. 31-53. 

[GAF84]      E Gafni D. Bertsekas, "Dynamic Control of Session Input Rates in Communication 
Networks," IEEE Transactions on Automatic Control, Vol 29, No. 10, pp. 1009-1016, 

1984. 
[GHJV95]    E. Gamma, R. Helm, R. Johnson, J. Vlissides, "Design Patterns: Elements of Reusable 

Object-Oriented Software," Addison-Wesley, 1995. 

88 



[GOS93] 

[GR094] 

[HIS94] 

[HAL95] 

[HOF95] 

[HYM91] 

[HYM93] 

[HYM94] 

[KHE92] 

[KLE75] 

[LAW94] 

[LAZ96] 

[LEE96] 

[LEW95] 

Kaushik Gosh, Bodhisattwa Mukherjee, Karsten Schwan, "Experimentation with 
Configurable, Lightweight Threads on a KSR Multiprocessor," GIT-CC-93/37, 
Technical Report, College of Computing, Georgia Institute of Technology, 1993 

W. Gropp, E. Lusk, A. Skjellum, "Using MPI," MIT Press, 1994. 

Hadama H., Izaki T.,and Tokizawa I.:"Cost Comparison of STM and ATM Transport 
Networks," NETWORKS'94. 

J. Hall. I. Schieferdecker, M. Tschicholz, "Customer Requirements on Teleservice 
Management," in IFIP/IEEE International Symposium on Integrated Network 
Management, Santa Barbara, California, 1995., pp. 143-155 

R.C. Hofer, M.L. Loper, "DIS Today," in Proceedings of the IEEE, Vol. 83 No 8 pp 
1124-1137, August 1995 

J. M. Hyman, A. A. Lazar, G Pacifici, "Real-Time Scheduling with Quality of 
Service  Constraints,"  IEEE  Journal   on  Selected  Areas  in  Communications 
September 1991 

J. M. Hyman, A. A. Lazar, G Pacifici, "A Separation Principle Between Scheduling 
and Admission Control for Broadband Switching," IEEE Journal on Selected Areas 
in Communications, May 1993. 

J.M. Hyman., A.A. Lazar, and G Pacifici, XXVC, VP and VN Resource Assignment 
Strategies for Broadband Networks", Proceedings of the 4th International Workshop 
on Network and Operating System Support for Digital Audio and Video, D. 
Shepherd, G. Blair, G. Coulson, N. Davies and F. Garcia (eds), Lecture Note's in 
Computer Science, Vol. 846, Springer-Verlag, 1994. 

S. Kheradpir, W. Stinson, R. Chipalkatti, and G. Bossert, "Managing the network 
manager," IEEE Communications, vol. 30, pp. 12-21, July 1992 

L. Kleinrock, Queueing Systems, Wiley-Interscience, 1975. 

A. M. Law and M. McComas, "Simulation software for communications networks, 
the state of the art," IEEE Communications Magazine, vol. 32, pp. 44-50, March 1994 

A.A. Lazar, K.S. Lim, and F. Marconcini, "Realizing a Foundation for 
Programmability of ATM Networks with the Binding Architecture," Journal of 
Selected Areas in Communications, Vol. 14, No. 7., Sep 1996. pp. 1214-1227. 

T.-H. Lee, K.-C. Lai, and S.-Y. Duann, "Design of a Real-Time Call Admission 
Controller for ATM Networks," IEEE/ACm Transactions on Networking vol 4 no 
5, October 1996, pp. 758-765. 

D. Lewis, S O'Connell, W Donnelly, L. Bjerring, "Experiences in Multi-domain 
Management System Development," in IFIP/IEEE International Symposium on 
Integrated Network Management, Santa Barbara, California, 1995., pp. 494-505 

89 



[LOG92]      M. Logothetis, S. Shioda, "Centralized Virtual Path Bandwidth Allocation Scheme for 
ATM Networks," IEICE Transactions on Communications, vol. E75-B, no. 10, Oct 
1992, pp. 1071-1080. 

[LOG95]      M. Logothetis, S.  Shioda, "Medium-Term Centralized Virtual-Path Bandwidth 
Control Based on Traffic Measurements," IEEE Transactions on Communications, 
vol. 43, no. 10, Oct 1995, pp. 2630-2640. 

[MCC93      W. McCornick, Y. Park, "Approximating the distribution of the maximum queue 
length for M/M/s queues," Ed. U.N. Bhat, I.V. Basawa, Queueing and Related Models, 
pp. 241-261. 

[MOU95] Constantina Mourelatou, David Griffin, Panos Georgatsos, George Mykoniatis, "ATM 
VPN services: Provisioning, Operational and Management aspects, "ICS-FORTH 
Technical Report No. 148. 

[MPI94] Message Passing Interface Forum. MPI: A message-passing interface standard. 
International Journal of Supercomputer Applications, 8(3/4), 1994. 

[NIC93] D.M. Nicol, "The cost of conservative synchronization in parallel discrete-event 
simulations," Journal of ACM, 40(2):304-333, April 1993. 

[NIC95] D. Nicol, P. Heidelberger, "On extending parallelism to serial simulator," in 
Proceedings of the 9th Workshop on Parallel and Distributed Simulation, pp. 60-67, 
June 1995. 

[OHT92] S. Ohta, K.Sato, "Dynamic Bandwidth Control of the Virtual Path in an Asynchronous 
Transfer Mode Network, "IEEE Trans. Comm. Technol., 40, 7, pp. 1239-1247. 

[ORD96] Ariel Orda, Giovanni Pacifici and Dimitrios E. Pendarakis, "An Adaptive Virtual Path 
Allocation Policy for Broadband Networks", in Proceedings of INFOCOM'96, San 
Francisco, CA, March 24-28, 1996. 

[PAC95] G. Pacifici and R. Stadler, "Integrating Resource Control and Performance 
Management in Multimedia Networks," in Proceeding of the IEEE International 
Conference on Communications, Seattle, WA, June 1995. 

[PIT95] A, Pitsillides, J. Lambert, D. Tipper, "A Multilevel Optimal Control Approach to 
Dynamic Bandwidth Allocation in Broadband ISDN, "Telecommunication System 
4(1995), pp. 71-96. 

[RI062]       John Riordan, Stochastic service systems, New York, Wiley 1962. 

[RUM91] J. Rumbaugh, M. Blaha, W. Premerlani, F Eddy, W. Lorensen, Object-oriented 
modeling and design, Prentice Hall, 1991. 

[SCH93] J.M. Schneider, T. Preuss, and P.S.Nielsen, "Management of Virtual Private Networks 
for Integrated Broadband Communication," in Proceeding of the ACM SIGCOMM 
'93, pp. 224-237. 

90 



[SAY95] T. Saydam and J.P. Gaspoz, "Object-Oriented Design of a VPN Bandwidth 
Management System," in IFIP/IEEE International Symposium on Integrated Network 
Management, Santa Barbara, California, 1995. 

[SCH87] Mischa Schwartz, Telecommunication Networks: Protocols, Modeling and Analysis, 
Addison-Wesley, 1987. 

[STE91] J.S. Steinman, "SPEEDES: Synchronous parallel environment for emulation and 
discrete event simulation," Advances in Parallel and Distributed Simulation, vol. 23, 
pp 95-103, Jan 1991 

[STE95] J.S. Steinman, CA. Lee, L.F. Wilson, D.M. Nicol, "Global virtual time and 
distributed synchronization," in Proceedings of the 9th Workshop on Parallel and 
Distributed Simulation, pp. 139-148, Junel995. 

[ST092] M. Stonebraker, "An overview of the Sequoia 2000 project," Proceedings of the 
COMPCON '92, (San Francisco, CA), February 1992. 

[TAN87]      A. Tanenbaum, Operating Systems: Design and Implementation, Prentice Hall, 1987. 

[TSC95] M. Tschichholz, J. Hall, S. Abeck, R. Wies, "Information Aspects and Future 
Directions in an Integrated Telecommunications and Enterprise Management 
Environment," Journal of Network and Systems Management, Vol. 3, No. 1, 1995, 
pp.111-138 

[UNG94] B.W. Unger, D.J. Goetz, and S.W. Maryka, "Simulation of SS7 common channel 
signaling," IEEE Communications Magazine, vol. 32, pp. 52-62, March 1994 

[WOL89]     R.W Wolff, Stochastic Modeling and the Theory of Queues, Prentice Hall, 1989. 

[YAM91] T. Yamamura, T. Yasushi, N. Fujii, "A Study on an End Customer Controlled Circuit 
Reconfiguration System for Leased Line Network," ISINM II, 1991, pp. 383-394. 

[ZER92] T.G.Zerbiec, "Considering the Past and Anticipating the Future for Private Data 
Networks", IEEE Communication, March 1992, pp.36-46 

»U.S. GOVERNMENT PRINTING OFFICE:     199 

91 
7-509-127-61063 



MISSION 
OF 

ROME LABORATORY 

Mission. The mission of Rome Laboratory is to advance the science and 
technologies of command, control, communications and intelligence and to 
transition them into systems to meet customer needs. To achieve this, 
Rome Lab: 

a. Conducts vigorous research, development and test programs in all 
applicable technologies; 

b. Transitions technology to current and future systems to improve 
operational capability, readiness, and supportability; 

c. Provides a full range of technical support to Air Force Material 
Command product centers and other Air Force organizations; 

d. Promotes transfer of technology to the private sector; 

e. Maintains leading edge technological expertise in the areas of 
surveillance, communications, command and control, intelligence, 
reliability science, electro-magnetic technology, photonics, signal 
processing, and computational science. 

The thrust areas of technical competence include: Surveillance, 
Communications, Command and Control, Intelligence, Signal Processing, 
Computer Science and Technology, Electromagnetic Technology, 
Photonics and Reliability Sciences. 


